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EXECUTIVE SUMMARY

Introduction

The bulk-flow analysis results for this contract are incorporated in the following publications:

f(a) Childs, D. (1991a), "Fluid-Structure Interaction Forces at Pump-Impeller-

Shroud Surfaces for Axial Vibration Analysis," ASME Trans.; Journal of

Vibration and Acoustics, Vol. 113, pp. 113-115, January 1991

Y
Chitds, D. (1991b), "Centrifugal Acceleration Modes for Incompressible Fluid

in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing,"

ASME Trans., Journal of Vibration-and Acoustics, Vol. 113, pp. 209-218,

April 1991

__Williams, J. and Childs, D. (1992a), "Influence of Impeller Shroud Forces on

Pump Rotordynamics," ASME _ournal of Vibration and Acoustics, Vol.

113, pp. 509-515, October 1991

/v',,._(e)

Childs, D. (1992b), "Pressure Oscillation in the Leakage Annulus Between a

Shrouded Impeller and Its Housing Due to Impeller-Discharge-Pressure

Disturbances, ASME Trans., Journal of Fluids Engineering,Vol. 114, pp. 61-

67, March 1992

Cao, N. (1993), "Compressibility Effects on Rotor Forces in the Leakage Path

Between a Shrouded Pump Impeller and Its Housing," M.S.M.E. Thesis, Texas

A&M University, August 1993

Computational Fluid Mechanics (CFD) results developed by Dr. Erian Baskharone are

reported separately. Two copies of these publications, were submitted as preliminary final

reports under the terms of this contract and are incorporated in this final reporti:=

The results of this study and the publications aboV:e'can be summarized as follows:-



Impeller Forces for Axial Vibration Analysis

Initial bulk-flow analyses for iml_ellers considered radi_ reaction forces developed by

impellers due to lateral rotor motion Reference (a) above examined the axial reaction forces,

concluding that no resonance exists for axial motion. Methods are presented for calculating

stiffness, damping, and added mass coefficients for axial vibrations of turbopumps.

Centrifugal Acceleration Modes

Prior to this study, Childs (1989) calculated reaction force components for an impeller due to

precession of a pump rotor at nonsynchronous frequencies. His results showed unexpected

peaks in the force components which he ascribed to fluid "resonance", arising from the

centrifugal-acceleration term in the momentum equation. Dr. Brennen at Cal Tech questioned

this terminology, suggesting that the term resonance could only be supported if an analysis
confirmed that the governing system actually had complex eigenvalues at or near the locations

of peak amplitudes. Childs (1991b) cited above, yielded roots and eigenvectors at the

predicted locations, confirming the prior predictions of fluid resonances.

Influence of Impeller Shroud Forces on Pump Rotordynamics

A question presented by the initial predictions that impeller reaction forces could contain

"peaks" was: How should radial and circumferential reaction forces be modeled if they can

not be modeled with stiffness, damping, and added-mass coefficients? Furthermore, what

influence do the predicted peaks have on rotordynamics? Williams and Childs (1992a)

developed linear and nonlinear analysis procedures for incorporating the frequency-dependent

radial and circumferential force coefficients into a rotordynamic analysis. Transient nonlinear

analysis used the predicted reaction forces directly as a function of the instantaneous

normalized precession frequency. Synchronous response due to imbalance proceeds directly,

replacing the radial and circumferential force coefficients with direct and cross-coupled

stiffness coefficients which are a function of running speed. Eigenanalysis is iterative, since

the stiffness coefficients depend on the precession frequency which is in turn def'med by the
eigenvalue.

The predicted impeller-force peaks were shown to have a major influence on rotordynamics

for the model considered. However, the results are difficult to generalize to turbomachinery
rotordynamics.

Pressure Oscillation ExcitationOf the Flow in an Impeller Shrouded Annulus

The analyses cited above all considered reaction forces due to impeller shroud motion.

Childs (1992b) looked at the separate problem of pressure and velocity predictions in the

annulus due to precessing pressure oscillations at the discharge of the impeller. This analysis

was not aimed at rotordynamics. The impeller is assumed to be spinning but not precessing.



Pressureoscillationfrom the impeller dischargepropagatedown throughthe annulusandout
the exit wearing-ringseal. The analysisshowedthatmultiple sharpresonancescould be
excitedin the annulusandthat they typically resultedin peakpressureoscillationsat or near
the exit wearing-ringseal. Theseresultssuggesteda possibleexplanationfor the internal-
cooling problemfor the KEL-F exit sealsof the SSME-HPFTP.However,the applicability of
theanalysiswas limited becausean incompressible-flowmodelwasused.

Compressibility Effects on Rotordynamics and Leakage and Pressure in an Impeller

Annulus

Nhai's (1993) thesis extended previous models by incorporating fluid compressibility. Nhai

uses a barotropic model for which the viscosity and density are functions of the pressure

(only). Adding compressibility to the model means that acoustic modes can be generated in

addition to the "centrifugal-accelerations" modes which were present in earlier analyses.

Acoustic analysis normally discards perturbation terms which are included in Nhai's general

perturbation analysis.

Nhai used the HPFTP first stage impeller for his analysis. He analyzed the exit wearing-ring

seal leakage-AP relationship using a code developed by Morrison et al. (1983). Fluid

properties were modeled via an NBS code, McCarthy et al. (1986).

Nhai examined the influence of compressibility on both rotordynamic characteristics of pumps

and pressure and flow oscillations within the annulus due to pressure perturbations of the

impeller exit. Concerning rotordynamic-response characteristics, Nhai's analysis sought to

answer the following basic questions:

(a) What influence does compressibility have on the centrifugal-acceleration modes

predicted by earlier analyses?

(b) What "acoustic" modes are predicted due to fluid compressibility?

The answers provided are as follows:

(a) Compressibility has a negligible influence on centrifugal-acceleration modes.
The result with and without compressibility are basically the same.

(b) Fluid compressibility yields acoustic modes, with the lowest mode appearing at

about twelve times running speed. This mode would be excited by rotor

precession.

Concerning pressure oscillations within the leakage annulus, Nhai used a precessing pressure

wave at the pump impeller exit for excitation with n diametral modes. Following Bolleter

(1988), n=nl (impeller vanes) - n2 (diffuser vanes) = 24-13=11. Nhai's analysis predicts sharp

peaks at precessional frequencies which are 6.5 and 7.8 times running speed. These modes

give predicted amplification factors from impeller discharge to the exit seal of the annulus



(inlet sealof the impeller) of 7.5 and 17.8. Eithermodecouldreasonablyexplain the internal
melting observedin theHPFTPseals. The difficulty is thatno excitationfrequencyis
predictedby existingtheoriesneartheseresonantfrequencies.Bolleter predictsexcitation
frequenciesat multiplesof _ = n_c0/nwherec0is therunning speed. Table2 (page38) of
Nhai's thesisshowsnoexcitationfrequenciesat or neartheresonantfrequencies.

To bebrief, thepresentanalysisonly providesa plausibleexplanationfor themelting-seal
situation,if the impellerprovidestherequiredexcitationfrequencies,andtestingwould be
necessaryto confirm their presenceor absence.

REFERENCES

Bolleter, U., (1988), "Blade Passage Tones of Centrifugal Pumps," Vibrations, Vol. 4, pp. 8-
13, September. o

Childs, D. W., (1989), "Fluid-Structure Interaction Forces at Pump-Impeller-Shroud Surface

for Rotordynamic Calculations," ASME Trans., Journal of Vibrations, Acoustics, Stress, and
Reliability in Design,Vol. 111, pp. 216-225, July.

McCarthy, R.D., (1986), "Thermophysical Properties of Fluids, MIPROPS 86," NBS Standard

Reference Data Base 12, Thermophysics Division, Center for Chemical Engineering, National
Bureau of Standards, Boulder, Colorado.

Morrison, G.L., Rhode, D.L., Kogan, K.C., Chi, D., and Demco, J., (1983) "Labyrinth Seals

for Incompressible Flow - Final Report," G.C. Marshall Space Flight Center, MSFC,
Alabama, 35812, Report Number SEAL-4-83, November.
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Fluid-StructureInteractionForces
at Pump-Impeller-ShroudSurfaces
for AxialVibrationAnalysis
Solutions are presented for the dynamic axial forces developed by pump-impeller-

shroud surfaces. A bulk-flow model of the leakage path between the impeller and

the housing is used for the analysis consisting of the path.momentum, circumfer-

ential-momentum, and continuity equations. Shear stresses at the impeller and hous-

ing surfaces are modeled according to Hirs" turbulent lubrication model. The

governing equations were developed earlier to examine lateral rotordynamic forces

developed by impellers.
A perturbation expansion of the governing equations in the eccentricity ratio

yields a set of zeroth and first.order governing equations. The zeroth-order equations

define the leakage rate, velocity distributions, and the pressure distribution for a
centered impeller position. The first-order equations define the perturbations in the

velocity and pressure distributions due to axial motion of the impeller. Integration

of the perturbed pressure and shear-stress distribution acting on the rotor yields the

reaction forces acting on the impeller face.
Calculated results yield predictions of resonance peaks of the fluid within the

annulus formed by the impeller shroud and housing. Centrifugal acceleration terms

in the path-momentum equation are the physical origin of these unexpected pre-
dictions. For normalized tangential velocities at the inlet to the annulus,

Ueo( O) = Ueo(O)/RM of 0.5, the phenomenon is relatively minor. As ueo( O) is in-
creased to O. 7, sharper peaks are predicted. The fluid modes are well damped in all

cases.
Numerical results are presented for a double-suction single-stage pump which

indicate that the direct stiffness of the perturbed impeller shroud forces are negligible.

Small but appreciable added-mass and damping terms are deueloped which have a

modest influence on damping and peak-amplitude excitation frequency. The forces

only became important for pumps with very low axial natural frequencies in com-

parison to the running speed, viz., ten percent of the running speed or lower.

Introduction

Figure 1 illustrates an impeller stage of a multistage cen-
trifugal pump. Leakage along the front side of the impeller,
from impeller discharge to inlet, is restricted by a wear-ring
seal, while leakage along the back side is restricted by either
an interstage seal or a balance-discharge seal. The axial thrust
on the impeller is obviously of interest for structural integrity
of the pump and several investigators have presented analyses
and test results for the thrust versus various impeller param-

eters; Thomae and Stucki (1970), Lobanoff and Ross (1985).
Impellers are sometimes used directly as thrust-balancing ele-

ments; e.g., the main impeller of the Space Shuttle Main Engine
(SSME) High Pressure Oxygen Turbopump (HPOTP) is of
double,suction-entry design, and orifices at the inlet and exit

of the leakage path create the principal axial-thrust-balance
for the rotor. The leakage-path for the back side of the High

Contributed by the Technical Committee on Vibration and Sound for pub-
lication in the JOtTP_ALor VmP_ATtONA_D ACOUSTICS.Manuscript received
January 1990.

Pressure Fuel Turbopump (HPFTP) is also used for axial thrust

balance.
From an axial vibration viewpoint, the change in the axial

thrust of an impeller which is used for axial-thrust balance is
normally modeled by a stiffness and damping coefficient, i.e.,

Fz= -KZ,-CZ, (l)

where Z, is the axial change in position. The stiffness coefficient
K is the local slope in the thrust versus axial position curve
and is nominally constant around the equilibrium position. In
the SSME turbopumps, the stiffness of the pump housing is

used in series with the slope of the thrust-axial-position curve
to calculate'K. Damping primarily arises due to flow through

orifice restrictions.
An implicit assumption involved in the model of equation

(1) is that the natural frequencies of the fluid in the leakage
path are much higher than the pump's running speed or the
axial vibration frequencies of the rotor. From a conventional
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Fig. 1 Impeller stage

acoustics viewpoint, this is certainly the case; however. Child's
0987, 1989) analysis of incompressible flow in the leakage

path revealed resonances associated with the centrifugal ac-
celeration of the inwardly-flowing fluid. The present investi-

gation of the dynamic axial thrust developed by the pump
impeller shroud is stimulated by the 198Tanalysis and uses the
same flow model.

Geometry and Kinematics

Figure I illustrates the annular leakage paths along the front

and back sides of a typical shrouded impeller of a multistage
centrifugal pump. The present discussion concentrates on the

Nomenclature

a = nondimensional steady-
state amplitude due to

harmonic excitation,

defined by equation
(39)

A ts,A_,A 3s _- coefficients introduced

Ale_2e,A3e in equation (18) and

defined in the appendix

Ca, = discharge coefficient
for the exit wear-ring
seal, introduced in

equation (13)

Cs = initial (s= 0) clearance

tL)
f= f//o_ = dimensionless axial ex-

citation frequency
f, or2,f3 = dimensionless solution

coefficients introduced

in equation (25)
fk,fc = dimensionless force

coefficients introduced

in equation (31)
F0 = nominal axial reaction

force defined by equa-

tion (30)

Fz = axial reaction force (r-)
h = H/C, = nondimensionalized

clearance

H = clearance between im-

peller shroud and

housing (L)

Fig. 3
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X
Fig. 2 Impeller surface geometry

R(s)
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Local attitude angle of impeller surface

flow and pressure fields within the forward annulus; however,
the analysis also applies to the rear annulus. As illustrated in

Fig. 2, the outer surface of the impeller is a surface of revo-

lution formed by rotating the curve R = R(Z) about the Z axis.

A point on the surface may be located by the coordinates

Z,R(Z),O. The length along the curve R(Z) from the initial

L_ = leakage-path length,

defined by equation

(3), (L) to harmonic excitation,
p = P/p V_ = nondimensionalized defined by equation

static fluid pressure (39)

P = fluid static pressure _ = perturbation coefficient

(F/L2) w = pump running speed
r=R/R i = nondimensionalized ra- (T-_)

dial coordinate
_. = pump axial natural fre-

R = radial coordinate (L) quency (T-i)

R_ = initial (s= o) radius (L) _. = _o./w = dimensionless pump

R, = 2HUs/v = path-velocity Reynolds axial natural frequency
number tl = axial excitation fre-

s=S/L_ = nondimensionalized quency (T-_)

path length p = fluid density (M/L 3)
S = path coordinate intro- 0 = circumferential coordi-

duced in equation (2), hate

(L) a, as = normalized friction

T=L/V_ = representative transit factors, defined by
time for fluid travers- equation (15)

ing the leakage path r=o_t = nondimensionalized
(7) time

us=U/V, = nondimensionalized // = entrance-loss coeffi-

path fluid velocity cient introduced in

ue = Ue/R,_ = nondimensionalized equation (1 l)
circumferential fluid _ = A/Ci -- nondimensionalized ax.

velocity ial impeller displace-
V_ = initial (s = 0) fluid ve- ment

locity ,a = axial impeller displace-

_b = steady-state phase due ment (L)



pointRi,Z, to an arbitrary point R,Z is denoted by S and

defined by

1 + + du (2)
S= z, k_'-_, ] = e,

In the equations which follow, the path coordinate S and

angular coordinate 0 are used as independent spatial variables.
The coordinates Z,R defining the impeller surface are expressed

as parametric functions of S, i.e., Z(S), R(S). The length of

the leakage path along the impeller face is defined by

L, = ,)z_ + -_ du (3)

Trigonometric functions of the angle 7, illustrated in Fig.

3, are defined as follows

dR dZ dR

tan'¢ = - _-_, cosy = _-_, sin7 = - _-_ (4)

The clearance between the impeller and the housing is denoted

as H(S,O,t), with the time dependency introduced by impeller
motion. In the centered position, the clearance function de-

pends only on S and is denoted by Ho(S). Displacement of the
impeller in the Z direction by the differential A yields

• dR

H(S,O,t) = Ho(S) - A(t)sin7 = Ho(S)'+ A(t d)-_S (5)

Governing Equations

Returning to Fig. 2, the path coordinate S and circumfer-
ential coordinate RO are used to locate a fluid differential

element of thickness H(S,O,t). From Childs (1987), the con-

tinuity equation can be stated

+  v,=0

where Us and Ue are the path and circumferential bulk-velocity

components, respectively. Also from Childs (1987), the path
and circumferential momentum equations are stated

aP ,,U_dR /3U, OU, Ue OU, \
- - +"o÷",,+"" +v; +

HaP /aUo auo Ue auo . ueu, ae\
-- -_ _)--_ = 7 ,s + I",r + P H L W + - _ "-_ + "_ Cls + ---R- a-S)

Following Hits' approach (1973), the wall shear-stress defi-

nitions in these equations can be stated

rm'+|

_ ms

rss=--fpU_Rs [1 + (Ue/U,)2] -'-_

mr+ I

nr , aRmr.
r_=--fptJ, , 11 +[(Uo-Ro_)/U, I2I --T-- (6)

m$+l

ns _ - -_u- 1
res='-fpUoUr K, l + (VolU_)2l-'S--

mr+l

nr mr

re, ="fpU,(Ue- R,_)R, [ 1+ [(Ue- R,_)/U,I" l-T=

where

R, = 2HU/v (7)

Nondimensionalization and Perturbation Analysis

The governing equations define the bulk-flow velocity com-

ponents (U. Ue) and the pressure P as a function of the co-

ordinates (RO, S) and time, t. They are conveniently
nondimensionalized by introducing the following variables

u,= U, IVi, uo= UelR_o, p=PloV_

h = H/C. s = S/Ls, r = R/Ri (8)

r = o_t, b = Vi/R_, T= L/V,

The objective of the present analysis is to examine the changes
in (u,, ue, P) due to changes in the clearance function h(O,s,t)

caused by small axial motion of the impeller within its housing.

To this end, the governing equations are expanded in the per-

turbation variables

Us=Uso+eUsl, h=ho+_ht

ue=Uoo+_Uel, p=po+_pl (9)

where _=e/C_ is the perturbation parameter. The following

equations result:

Zeroth-Order Equations

(a) Path-Momentum Equation

dPo lfdr\u_o [______) l dho ldrTu2ds rL-_s)'-'_ + hods 7dsJ ,o=0 (10o)

(b) Circumferential-Momentum Equation

duoo Ueo dr
___s +_;. __ + [o,(Uoo_ r) + orUoo]/2 =O (10b)

(c) Continuity Equation

rhou_o = 1 (10c)

duso
The continuity equation has been used to eliminate _ from

equation (10a). The mohaentum equations define the pressure
and velocity distributions for a centered impeller position. They

are coupled and nonlinear and must be solved iteratively. The
initial condition for Ueo(O) is obtained from the exit flow con-
dition of the impeller. The inlet and discharge pressure of the

impeller are known and serve, respectively, as the exit (P,) and

supply (P_) pressures for the leakage flow along the impeller
face. The inlet condition for Po is obtained from the inlet

relationship

Ps- Po(O,O,t) = p(i + OU2o(O,O,t)/2 (l l)

From this relationship, the zeroth-order pressure relationship

is

po(O) = Pr/p V_ - (1 + _)U:so(O)/2 (12)

The wear-ring seal at the leakage-path exit also provides a

restriction, yielding a relationship of the form

P(Ls,O,t) - P, = 2 Ca, U_,(L,,O, t) (13)

First-Order Equations

(a) Path-Momentum Equation

_s L or r aO u,o

(14a)

(b) Circumferential-Momentum Equation

R i _ _ + llolA_ + 14slA3e

[ ..Ou,t -Ueoau,, au_,]
+ +..o- Tj=hv ,e (14b)

(c) Continuity Equation

¢9U,, oat Oue, [1 dr 1 d_.) =
h,..o.dho I / ah, oad_,oah,+.odh, 

+-E-o + W.)
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Fig. 4 Nominal configuration of test Impeller

Most of the parameters of these equations are defined in Ap-
pendix A. The quantities os and orare defined by

-,= (L/Ho)X,, a, = (L/Ho)h, (15)

where Xs and X, are dimensionless stator and rotor friction
factors defined by

ms÷]

Xs = nsR_[l + (uoo/bu.o) 2] 2

lwr+ ]

X,=nrR_o'[ 1 + [(ueo-r)/buso] 2] 2

From equations (5) and (8), the perturbation clearance func-
tion is

hi _ R(__)dr 6= A__=; ds' Ci (16)

Hence,

ah, (R_,%d=, ah,
as-;tZ-d o0-°

First-Order Equation Solutions. For axial excitation, the 0

partial derivatives of equations (14) are eliminated. The time

variation can be eliminated by assuming the following har-
monic solutions for the clearance excitation

6= 6oe m' = ¢_0eg" (17)

and dependent variables

Pi =Pte if', usl = ftsledt>, ue] = fte,e df" (18)
where

f= 9Ao, _t = r (19)

Note that _bl, tJs_ , and fie= are now complex variables. Sub-
stitution into equations (14) yields

where

and

LPl J t.Pi.) l

[A]= A_lu_o (Aze+jfT)lu,o

L A 3, - u_oB + JI_ T A zs

"' I )

14 dr - flT dr l

(20)

(21)

(22)

F2 Uso d2___ I dhodr _ B=l dr I dho (23)
-ho ho "_s d__)' r ds+ ho ds

The following three boundary conditions are specified for the
solution of equation (20):

(a) The entrance-perturbation, circumferential velocity is
zero, i.e.,

zie,(0) = 0 (24a)

(b) The entrance loss at the seal entrance is defined by equa-
tion (11), and the corresponding perturbation-variable rela-
tionship is

Pl(0) = - (1 + _)iTsl(0 ) (24b)

(c) The relationship at the exit is provided by equation (13)
and yields the following perturbation relationship

Journal of Vibration and Acoustics JANUARY lt1_1 Vnl 11"1 ! 111
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Table 1 Zaroth.ordar.solutl0n results; C,: 3.5 mm =

-.iolo ioCa, 1.655 1.690 1.731

eh (kg/,,zc) 4.784 4.391 3.973

rox 10-'(N) 2.25 2.15 2.04

.D,(I) = C_,.,so(l)u,,(l) (24c)

The value for C_ depends on the wear-ring sea] geometry.
Solution of equation (20) for the boundary conditions of equa-

tions (24) is relatively straightforward using a transition-matrix

approach (Meirovitch, 1986). The solution can be stated

.,,:: I:- I:
p,j l,.f3, + if3,.)

1121Vol 113, JANUARY 1991

Table 2

_m

0.5

0.6

0.7

Asymptotic coefficients from Figs. 5 and @

/('o x I0 -( Ma

,Vim X0

.648 5.61

6.05 5.63

13.6 5.68

Cox 10 =

Kg

.809

.911

1.05

Reaction Force. From Fig. 4, the axial differential force

component on a differential-impeller surface area can be stated

dFz = - (Psin'y + 1._os.y)RdOdS (26)

The zeroth and first-order force components are obtained by

substituting for P and r,_ in equation (26). From equation (6),

the perturbation shear stresses can be stated

vs,, = P _(Bs,u,, + B_uo, + B,3h,) (27)

Transactions of the ASME



The coefficients of these equations are defined in the appendix•
The zeroth and first-order forces are defined by

Fz°= 2xR2i [Zrjo zdr t dz

and

f zI = f Zlk+ JFz'c = Fo(/'k+ Jffc)_o
where

2 2 '2Fo = xRiAP= rRi Cap V;
2 CtF dr

+ ': "(-_) B.'_ss]rds

2 I dr L L
ffc=-cdS£If3S_ss+(_i)Bstfls+(-_i)Bszfz_]rds

lO[ ,:

uoo(O)=0.5_
(28) _

7 :s,

uoo(O} "0'7 ....

(29) 5_- Bk .o Imp*ller Fores---- :I:'>IZ,I//_I

_','
(3o) 4_ I(,':

_/;

• 1 •2 .3 .4 •5

f=_/u

,6 .7 .8 ._9

Numerical Results. Figure 4 illustrates the pump-impeller
and shroud geometry used by Bolleter et al. (1987) in their test
program for radial force coefficients. Their pump uses a vaned
diffuser. Their tests were at best efficiency point (BEP) with
the pump running at 2000 rpm, while developing 68m of head
and 130 l/sec of flow rate. The impeller has seven blades and
an impeller exit angle of 22.5 deg. The test fluid is water at
80"F. For the present study, AP across the impeller is assumed
to be 70 percent of the total head rise of the stage. Based on
pitot-tube measurements, impeller exit tangential velocity is
about 50 percent of the impeller discharge surface velocity;
hence, ueo(0) = 0.5.

Both walls of the annulus are assumed to be smooth and
represented by Yamada's (1962) test data; mr= ms = -0.25,
nr=ns=0.079. The inlet loss for the annulus, _, is assumed
to be 0.1. The discharge coefficient for the seal is calculated
iteratively as follows. With an assumed Cde, equations (10),
(11), and (12) were used to calculate the leakage through the
impeller annulus and the pressure and tangential-velocity up-
stream of the seal. The seal is then analyzed (with the same
equations) using the calculated seal inlet pressure and tangen-
tial velocity to determine leakage and Cd,. The iteration con-
tinues until the leakage predictions for the exit seal and the
impeller annulus agree. Table 1 provides zeroth-order solu-
tions.

Figures 5 and 6 illustrate f, and fc versus f for u0o(0) = 0.5,
0.6, and 0.7. The u_o(0) = 0.5 curves are comparatively smooth;
the ue0(0)= 0.6, 0.7 curves show evidence of fluid resonances
similar to those obtained earlier by Childs (1987). Specifically,
in the absence of fluid resonances, the expected results for f,
would be a parabola without the predicted fluctuation in the
neighborhood off=0.25. Further, the expected result for re
would be a constant without the low-frequency fluctuations.

The functions fk, fc are nondimensionalized frequency-de-
pendent stiffness and damping coefficients. To develop a phys-
ical model for the axial reaction forces defined by these curves,
the fkb0 curves will be reviewed first. All of the fk curves
demonstrate a quadratic asymptote with the following fre-
quency-domain model

fk,(/) = - £ + A4Je, (32)

which implies the time-domain reaction-force model

Fk,, = - (K,.Z, + M.Z,,) (33)
where

I(. = l(Fo/ C. M¢ = h_.fFo/Ct._ (34)

The physic.m] coefficients obtained from a curve fit of the
asymptotic solutions in Fig. 5 yieldthe physical coefficients
of Table 2.
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The stiffness values are negligibly small in comparison to
the axial stiffness which would center the pump rotor either
through a thrust bearing or balance-piston arrangements. The
mass coefficient is small but appreciable in comparison to the
impeller mass. This "added mass" contribution to the impeller
rotor has not previously been accounted for in axial vibration
analyses of pumps.

Thef_ curves of Fig, 6 can be viewed as nondimensionalized
frequency-dependent damping coefficients. The asymptotic
behavior of these curves (for high values of,/) shows an un-
expected, approximately-linear, increase in damping with in-
creasing frequency. The asymptotic results are curvefitted by
the linear model

fc(J) = 1_o- C'f (35)

The linear dependence offc on C yields the time-domain re-
action-force model

F,.,,= -C,,_,,Z,, fl,,= IZ.,./Z,I '" (36)
where

Co= dFJ C_Z

Values of C, are provided in Table 2. Physically meaningful
values for damping are obtained by multiplying Ca by 12,e.g.,
the nominal damping value for fl = co= 209 rd/sec is about 209
N sec/m (1.2 ib sec/in) which is significant.

t .....
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The physical example used to demonstrate the solution of
equation (39) is a double-suction single-stage pump with the

impeller of Fig. 4 and the following physical data:

Mzo = 100 kg, _'=0.05, (_ = 2000 rpm= 209 rd/sec

With a double-suction design, the reaction force from the

impeller face is doubled. Figures 7 and 8 illustrate solutions

to equation (39) for _, = 0.5 and 1.5 times the running speed

for no impeller forces and impeller forces corresponding to

u00(0)=0.5, 0.6, and 0.7. The magnitude and phase of a are

presented and demonstrate that the impeller forces provide a
modest amount of additional damping and slightly displace

the peak-amplitude-frequency location. Although not pre-
sented here, the impeller forces did cause significant changes

in the steady state response when &, was reduced to unreal-

istically low values on the order of 0. I.

Summary and Conclusions

An analysis has been developed and predictions presented

for the axial forces developed on a pump impeller shroud. The

force coefficients are reduced to frequency-dependent stiffness

and damping coefficients. Fluid resonances are evident in these
results comparable to the rotordynamic-coefficient analysis

results of Chiids (1987). The asymptotic expansion of these

coefficients yield negligible stiffness values and small but ap-

preciable added mass and damping coefficients.
Frequency-response analysis o f a double-suction single-stage

pump impeller indicates that the impeller shroud forces provide
a little additional damping and can modestly move the damped

natural frequency of the system for pumps with axial natural

frequencies on the order of 0.5 to 1.5 times the running speed.

The impeller-shroud •forces can only become really significant
for natural frequencies that are much lower than the running

speed, viz., one tenth of the running speed or lower.
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Modeling Annular Forces for Axial-Vibration Analysis. The
transient model for axial vibrations, including the impeller

forces, can be stated

MjZ,+(Cw_Fc)Z,+(Kw_Fk)Z =F, tt ) (37)

where Mw, Czo, and Kzo are the nominal mass, damping, and
stiffness coefficients, F,(t) is the external excitation force, and

Fc(/'o) = fc(fo)FJ C_; Fk(fo)= ftOro)FJ C, (38)

f° = fi°l_

The model of equation (2) has moved the impeller-shroud

reaction force from the right-hand side of the equation to the

left-hand side of the equation. The force is now modeled as

frequency-dependent stiffness and damping coefficients, which
combine directly with the nominal, mechanical, stiffness and

damping coefficients.
For an external harmonic excitation force of the form

Fe = F_ "_a*, the steady-state solution Z,_= Ae/a' is defined by

a = Ia I_ = A I(FeolKw)

= _/{ [_(1 - jTk) _./-21 +jf&,(2_- .f¢&.) ] (39)

where

J, = Kzo/ M_o; 2_, = Czo/ Mzo (40)

; f_ I'Fo_ - fk/'Fo\
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APPENDIX A

Perturbation Coefficients

A,s= [a_l - ms) + o,(! - mr)]U_o/2ho

2ueodr/l:
Azs= --'7- ds + [a,(mr + 1)/9o+ os(ms + l)f3t]uw/2

duso

A_ = -_s + [(2 + mr)o, + (2 + ms)as]uw/2

- [(1 + mr)o_o(Ueo- r) + (l + ms).:lueol/2

2,4 le = uw[( 1 - mr)(uoo- r)o, + (1 - ms)U6oOsl/ho

Transactions of the ASME



2A2a = U,o(O, + a s) + o,(mr + l)(U_o - r)B o

+ o,(ms + l)ueoBI + 2_ °

dr

ds

2A _ = a,(ueo - r)[mr- (1 + mr)f3o(ue o - r)/ Uso]

+ osUoo[mS- (1 + ms)Bluoo/uso]

ao = (Uoo - r)/b_uso| 1 + [(uoo - r)/buso] 2 ]

Ot = uoo/b2uso[1 + (uoo/buso) 2]

rra Perturbation Coefficients

Bet = hal + mr)(ueo- r)[l - Bo(Ueo - r)/u,o]/2b

Be2 = )_rIuso + (1 + mr)(Uoo - r)Bo]/2b

Bo3 -- k,mr(uoo - r)Uso/2bh o

r,_ Perturbation Coefficients

Bsi = X,[(2 + mr)u,o- (1 + mr)Bo(ueo-r)/2]

B a = X_(l + mr)BoU_o/2

Bs3 = h,mru_o/2ho
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Centrifugal-AccelerationModes for
IncompressibleFluid in the
Leakage Annulus Between a
Shrouded Pump Impeller and Its
Housing

An analysis is presented for the perturbed flow in the leakage path between a

shrouded-pump impeller and its housing. A bulk-flow model is used for the analysis

consisting of the path-momentum, circumferential-momentum, and continuity equa-
tions. Shear stress at the impeller and housing surfaces are modeled according to

Hirs' turbulent lubrication model. The governing equations have been used earlier

to examine rotordynamic reaction forces developed by lateral and axial impeller

motion.

A perturbation expansion of the governing equations in the eccentricity ratio

yields a set of zeroth and first-order governing equations, The zeroth-order equations

define the leakage rate, and the velocity and pressure distributions for a centered

impeller position. The first-order equations define the perturbations in the velocity

and pressure distributions due to axial or lateral motion of the impeller. Prior analyses

by the author of the perturbation equation have examined the reaction forces on
the shroud due to rotor motion. These analyses have produced "resonance" phe-

nomena associated with the centrifugal-acceleration body forces in the fluid field.

In the present analysis, an algorithm is developed and demonstrated for calculating

the complex eigenvalues and eigenvectors associated with these resonances. First-

and second-natural-frequency eigensolutions are presented for mode shapes corre-

sponding to lateral excitation. First-natural-frequency eigensolutions are also pre-

sented for mode shapes corresponding to axial excitation.

Introduction

Figure ! illustrates an impeller stage of a multistage cen-
trifugal pump. Leakage along the front side of the impeller,
from impeller discharge to inlet, is restricted by a wear-ring
seal, while leakage along the back side is restricted by either

an interstage seal or a balance-piston discharge seal. The pres-
ent analysis considers perturbed flow in the leakage paths be-
tween the impeller shroud surface and its housing.

Prior analyses by the author of those annulfi have been
concerned with lateral (1987, 1989) and axial (1990) reaction

forces developed by the impeller shrouds as a consequence of
impeller motion. These analyses have been based on "bulk-
flow" models which neglect the variation in the dependent
variables across the fluid film. The model consists of the path
and circumferential momentum equations and the continuity

equations.

The analyses cited have yielded force and moment coeffi-

-"_ntributed by the Technical Committee on Vibration and Sound for pub-
fication in the JotnusAJ.or VmZ_ATIONANDACourrxcs. Manuscript received
January 1990.

Joumal of Vibration and Acoustics

cients due to impeller motion but have also predicted "reso-

nance" phenomena, which are caused by the centrifugal-
acceleration body forces present in the path momentum equa-

tions. In the present analysis, an algorithm is developed and

demonstrated for calculating the complex eigenvalues and ei-

genvectors associated with the fluid resonances.

Geometry and Kinematics

Figure ! illustrates the annular leakage paths along the front
and back sides of a typical shrouded impeller of a multistage
centrifugal pump. The present discussion concentrates on the

flow and pressure fields within the forward annulus; however,

the analysis also applies to the rear annulus. As illustrated in
Fig. 2, the outer surface of the impeller is a surface of revo-
lution formed by rotating the curve R = R(Z) about the Z axis.
A point on the surface may be located by the coordinates Z,

R(Z),O. The length along the curve R(Z) from the initial point
Ri, Zi to an arbitrary point R,Z is denoted by S and defined

by
P_k;. PA_E DLAr,tK NOT FP,.MEL,
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In the equations which follow, the path coordinate S and
angular coordinate 0 are used as independent spatial variables.

Y

Z

Flg.2

X

Impellersurfacegeometry

The coordinates Z,R defining the impelIer surface are expressed
as parametric functions of S, i.e., Z(S),R(S). The length of
the leakage path along the impeller face is defined by

L. = jz_ 1+ du (2)\dZ/

Trigonometric functions of the angle 3', illustrated in figure 2,
are defined as follows

dR dZ dR
tan-},= - _-_, cos7 = _-_, sin 7 = - _-_ (3)

The clearance between the impeller and the housing is de-
noted as H(S,O,t), with the time dependency introduced by
impeller motion. In the centered position, the clearance func-
tion depends only on S and is denoted by Ho(S). Displacement

Nomenclature

Ats,A2s, A3s = Coefficients intro-
Ato,Az_,A_ duced in equation L. ffi leakage-path length,

(14) and defined in defined by equation
the appendix (2), (L)

Ca, = discharge coefficient P = P/a V_ = nondimensionalized
for the exit wear- static fluid pressure
ring seal, introduced P = fluid static pressure
in equation (13) (F/L 2)

Ci = initial (s= 0) radial r = R/Ri = nondimensionalized
clearance (L) radial coordinate

C, = exit seal clearance R = radial coordinate
(L) (L)

f= fl/o = dimensionless exci- Ri = initial (s = o) radius
tation frequency (L)

f,,fc = nondimensional Rs=2HUJv = path-velocity Rey-
stiffness and damp- nolds number
ing coefficients for s= S/Ls = nondimensionalized
the impeller corre- path length
sponding to axial S = path coordinate in-
motion at the non- troduced in equa-
dimensional fre- tion (1), (L)
quencyf= O/o T= L/I�, = representative

frq, fOq = nondlmensional, ra- transit time for fluid
dial, and circumfer- traversing the leak-
endal impeller-force age path (7)
coefficients corre- us = Us/_ = nondimensionalized
sponding to a circu- path fluid velocity
lar orbit at the uo = Ue/R_ ffi nondimensionalized
nondimensional fre- circumferential fluid
quency f= fl/co velocity

h =H/Q = nondimensionalized _ = initial (s = O) rotor
clearance velocity

H = clearance between ct=o+flod = dimensionless corn-
impeller shroud and plex eigenvalue for
housing (L) _ _ : fluid mode
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= perturbation coeffi-
cient

co = pump running speed
(T-')

fl = excitation frequency
(T -l)

p = fluid density (M/L _)
0 = circumferential co-

ordinate

O.Os = normalized friction
factors, defined by
equation (15)

T= c0t = nondimensionaliZed
time

/_ = entrance-loss coeffi-
cient introduced in
equation (l 1)

& = axial impeller dis-
placement (L)

o=j'_. = dimensionless real
part of complex ei-
genvalue for fluid
mode

_" = damping factor
from complex eigen-
value

_0d= _0,_- _.2 = dimensionless imagi-
nary part of com-
plex eigenvalue for
fluid mode (damped
natural frequency)

co.ffi dimensionless un-
damped natural fre-
quency from
complex eigenvalue

Trnne_rti_ne _f lhB &_l_



of the impeller in the X and Y directions obviously causes a

change in the clearance function, as does a change in the axial
position defined by Aft). For small displacements and rotations
of the impeller, the clearance function can be stated

H(S,O,t) = Ho(s) - Xcos0 - Ysin0- Asin7 (4)

Observe in this equation that Ho and sin7 are solely functions
of S, while X, Y, and A are functions only of t.

The clearance function provides the excitation for the re-

action forces developed in earlier analyses. Its importance for
the present study concerns the nature of the assumed solution

in seeking eigen solutions.

Governing Equations

Returning to Fig. 2, the path coordinate S and circumfer-
ential coordinate RO are used to locate a fluid differential

element of thickness H(S,O,t). From Childs (1987), the con-

tinuity equation can be stated

_+ a_su,n)+_ _ (uph+ _u,=0 (sa)

where Us and Uo are the path and circumferential bulk-velocity

components, respectively. The path and circumferential mo-

mentum equations are stated

ap . f.l_dR i_ll'au, au, uo at./,.\

(5b)

HaP H[aUe+aUe U6 aue ueU, aR).... -- +_-_u,4R ao "+"+P  ,Ti" R R
(5c)

Following Hirs' approach (1973), the wall shear-stress deft-
: nitions in these equations ran be slated

mJ÷|

MS 2 ms

: _: :, r_,=--_pU_R, [l+(Uo/Us)2] --_
i IL E+ i_2 ;Z ' :i ::! _:

i mr+ 1

nr -- mr
r..= TaU_R. II + [(U0- R.0)/U.]_lT (6)

ms+l

re,=2PUeU,R_[l+ (Ue/U,)_]2

mr+ 1

nr
re, = "_O Us(Ue - Rco)R'_'r[ 1 + [( Ue - R,_)/U,12) -T-

where

R. = 2HUJu (7)

Nondimensionalization and Perturbation Analysis

The governing equations define the bulk-flow velocity com-
ponents (Us, Ue) and the pressure P as a function of the co-
ordinates (RO,S) and time, t. They are conveniently
nondimensionafized by introducing the following variables

us= u,/E, us= Ue/R_, p=P/aV2
h = H/C. s= S/Is. •= R/Ri (8)

= _t, b = VJR_, T= L/V 1

The objective of the present analysis is to examine the changes

in (us, ue, P) due to changes in the clearance function h(O, s,

t) caused by small motion of the impeller within its housing.

To this end, the governing equations are expanded in the per-

turbation variables

us=Uso+¢Usl, h=ho+ehl

ue=ueo+¢ue,, p=po+¢pl (9)

were _ =e/C_ is the perturbation parameter. The following
equations result:

Zeroth-Order Equations

(a) Path-Momentum Equations

dPo l/'dr\_o [(._o_ l dh o ,dr] 2 0a, rt, )P+ hods u'°= (lO )

(b) Circumferential-Momentum Equation

dueo Ueo dr

-_ss +-r-_-s+[oXuoo-r)+o_ueo]/2=O (lOb)

(c) Continuity Equation

rhoUso = I (10c)

The quantities os and a, are defined by

% = (L/Ho);_s. o.= (LJHo)h. (II)

where X. and X. are dimensionless stator and rotor friction

factorsdefined by

m$+l

ks= nsR_o [I+ (Uso/bu$o)2] 2

mr+ 1

X, = nrR_o_[ 1 + [(Ueo- r)/ buso] 2 ]--T--

duro
The continuity equation has been used to eliminate _ from

equation (10a). The momentum equations define the pressure
and velocity distributions for a centered impeller position. They
are coupled and nonlinear and must be solved iteratively. The
initial condition for uso(O) is obtained from the exit flow con-
dition of the impeller. The inlet and discharge pressure of the

impeller are known and serve, respectively, as the exit (P,) and
supply (Ps) pressures for the leakage flow along the impeller
face. The inlet condition for Po is obtained from the inlet

relationship

Ps - Po(0,O, t) = p(l + li)U_so(O,O,t)/2

From this relationship, the zeroth-order pressure relationship
is

po(O) = Ps/a _- (1 +//)u2_,(0)/2 (12)

The wear-ring seal at the leakage-path exit also provides a

restriction,yieldinga relationshipof the form

O,t) - P,, = _Ca,,U_,(Ls,O,t) (13)P(/-,,,

R(s)

Fig. 3

, O

z(s)
Local attitude angle of Impeller surface



First-Order Equations

(a) Path-Momentum Equation

_s +u'lAz_+uslA3s+L Or r (90 us°_-l=hlAls

(14a)

(b) Circumferential-Momentum Equation

b'_R_l _-o + u°lA_+ uslA3°r

r ,.,..Ouot + ,r_eo auel Ouel] (14b)L"77 oo+'° 0sj--h,A,,

(c) Continuity Equation

ausj wT au61 [1 dr 1 dho\

h, ,o.dho1/ ah,    oah,+ rah, (14c)
+-_o "_S -_o LUS°'_S + r 80 Or /

New coefficients in these equations are defined in Appendix
A.

Eigen Solutions Corresponding to Lateral Excitation

The first-order equations (14) define the first-order pertur-
bations u_l(s,O,r), uel(s,O,z), and p(s,O,r) i'esulting from the
perturbed clearance function hi(r). From equations (4) and

(8), hi can be stated

(hi = ht_(s,r)cosO + hls(s,r)sinO (15)

The 0 dependency of the dependent variables is eliminated by
assuming the comparable, separation-of-variable, solution for-
mat

u_, = us_ccosO + ust,sinO

uet = U01cCOS0+ uol_sinO (16)

pt =ptccosO +ptjsin0

Substituting into equations (14) and equating like coefficients
of cos0 and sin0 yields six equations in the independent vari-
ables s,r. By introducing the complex variables

_l=U_l¢+jusl_, uol=uel_+juets

P_l =Ptc +JPls, h I = hlc +jhts , (17)

these six real equations are reduced to the following three

complex equations in s and r.

(18a)

h/LA
-_r _T,) p' + uel/lz0 + _,.%e

L a, + ;h,A,, (lSb)

8usl .o_T /! dr 1 dho\

[u:odho .'.'Tueo] usoOh, o_Tah_
(l 8c)

The time dependency of equations (18) is eliminated by as-

suming a harmonic solution of the form

ht = h,oe _', usl = ft.,re if', uo_ = u_te _f', p._ = P _df" ; f = fl/ _ (19)
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Fig. 4 Nondlmenslonal rotordynamlc force coefficients: (a) tangential-
force coefficient, (1_ _dlal-force coetflclent,_

The assumed clearance function h_(t) correspond to circular
orbital motion of the impeller at the precession frequency ft.

Substitution from equation (19) into equation (18) yields the

three complex ordinary differential equations in s of the form

+ (20)
LPlJ LPi) 3

The parameters qo, g_, g_, and g_ on the right hand side are
defined by Childs (1987). The right hand side is important for
the forced solution but irrelevant for eigenanalysis, which con-
cerns the homogeneous solution.

The following three boundary conditions are specified for
the solution of equation (20):

(a) The entrance-perturbation, circumferential velocity is
zero, i.e., ...... :

ez(0) = 0 (21 a)

(b) The entrance loss at the seal entrance is defined by equa-
tion (12), and the corresponding perturbation-variable rela-
tionship is

.b_(O)= - (I + O_,t(0) (21b)

(c) The relationship at the exit is provided by equation (13)
and yields the following perturbation relationship

,b,(l) = C,_.U,o(Z)_,,(Z) (21c)

The value for Ca_ depends on the wear-ring seal geometry.
Figure 4 illustrates the radial and tangential reaction-force

components for solutions to equation (20) from Childs (1989).
Tfi_-fl_ee-sbiiit-ions for eacfiTrarne of the figure correspond

to three inlet tangential velocity ratios U0o(0). If the centrifugal

acceleration term is dropped from the analysis, the foq curve

becomes a straight line and the f,_ curve becomes a parabola,
which are the expected solutions for liquid, constant-radius,

annular seals; Chiids and Kim (1985). The sharp deviation

from the expected linear and parabolic solution forms for these

curves in the "resonance" phenomenon cited in the introduc-

tion, and it is eliminated if the centrifugal acceleration term

is dropped• The question of interest here is: "If the solutions



of Fig. 4 arise from a 'resonance' of the fluid, how are the
associated eigenvalues and eigenvectors to be calculated, and
what do the mode shapes look like?"

The first part of the question is answered by reviewing the
solution approach to equation (20) which was used in gener-
ating the results of Fig 4. Following normal transition-matrix
approaches (Meirovitch, 1986), the solution to equation (20)
can be stated

Iw(s)l = [6(s)llwo] + Iv(s)]; (w)r=(fi,l, ue_, .hi) (22)

where [(I)] is the transition matrix, (wo) is the vector of initial
conditions, and (v) is the particular solution obtained for zero
initial conditions. [6] is obtained by solving the homogeneous
version of equation (20) three times for the initial conditions
(1,0,0), (0,1,0), and (0,0,1). One of the three initial conditions
of equation (22) is given; viz., usl(O) = 0. Equation (21b) pro-
vides one relationship between the remaining unknown initial
conditions ,bl(O) and usl(O). The final relationship between
these variables is obtained by evaluating equation (22) at s = 1
to obtain

_,_(1) = (I'.(l)_,l(0) + _]dl)_bl(0) + Vl(l)
,hi(l) = (I)_i(l)usz(0) + #33(1),61(0) + v3(l), (23)

and substituting into equation (21c). The resulting set of equa-
tions for the unknown initial conditions can be stated

1
[ (_+ o %o)- c.._.o(I)][_.,(o)]L@_l(l)- Cd,,U,o(1) (.hi(O))

0
= [_v,(l)+CdeUso(l)v,(l) 1 (24)

For forced response, the right-hand side is nonzero, and the
missing initial conditions are obtained by inverting the coef-
ficient matrix.

The resonance peaks in Fig. 4 appear when f is near the
imaginary part of the complex eigenvalue. To obtain the ei-
genvalue, the harmonic solution of equation (19) is replaced
by the general solution format

_, = u,le _, _Uel= _01e_, _l =/)l_

where a is both a complex number and the desired eigenvaiue,
Substitution into equations (I 8) yields the following definition
for the coefficient matrix of equation (20)
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m

.(aT
"J 0

r

.b L_(A_ + J_T)Iu,o -_

,(aT
A z_+J"_rU,O 0

(2s)

where

{1 dr 1 dho\
B= k; _+_'_), r==(a-jueo/r) (26)

Now, the differential equations and their homogeneous so-
lutions ate a function of the desired eigenvalue a, and the
eigenvalue is found when the determinant of the coefficient
matrix of equation (24) is zero.

The following approach was used to solve for the complex
eigenvalues:
(a) An initial value, so, is guessed based on the results of Fig.
4; viz., %=O+ffo wherefo yields a peak on the f)¢ curve.
(b) The homogeneous version of equation (20) is solved to
obtain [(I)], and the determinant

De=(l + _)[_'_3(l)-C,_,U,o(1)]-_l,3](1)+ C_eu,o(l ) (27)

3.55

57

[75

Fig. 6
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DIMENSIONS IN
MILLIMETERS.

Nominal configuration of the test Impeller
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is calculated at ao and al = _[1 +6(1 +j)] to obtain Deo and

De1; 6 is a small parameter.
(c) The secant rule is then used to calculate the next estimate
eq and Dez and subsequent a;'s and De_'s until convergence is
achieved.
The eigenvalues are obtained by setting

=}sl(O)=l, /_1(0)=(1+_), =}el(O)=O

and evaluating equation (22)

{w(s)i = [_(s,_)]I _o) }

over s_[O,l].

Eigen Solutions Corresponding to Axial Excitation

For axial excitation, the perturbed clearance function hm(T)
is defined from equations (4) and (8) to be

A(r)I'R_ dr

This excitation is not a function of 0, and neither are the
associated forced-response solutions. Figure 5 illustrates real
and imaginary reaction-force coefficients resulting from axial
impeller excitation (ChJids 1990). Note that "resonance" phe-
nomena are also present in these results.

To obtain eigenvalues and eigenvectors, the following cor-
responding assumed solution is substituted into equation (14)

us, = us1e_r, uel = uele _, Pl =.hi e_',

and the 0 derivatives are dropped to obtain the homogeneous

equations
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Table 1 Zeroth-order-solution results; C1: 3.Smm, C,=, 0.36mm

,,,o(O)
C,,-

,_ (kUsee)

0.,5

1.6,55

4.784 0.6 I 0.7 I
1.690 1.731

4.391 3.973

Table 2 Lowest-natural-lrequenoy elgenvaluos corresponding to let-
oral excitation

0.6 .36

0.7 .36

0.5 .72

.72

.196 .9_53

-.288 .300 .693

-.174 .349 .446

-.670 .175 .936

-.315 .291 .734

-.188 .345 ASO

_n

.651

.416

.391

.716

.429

.392

Table 3 Second-natural-frequency elgecvalues corresponding to Jet.
oral excitation; C,= 0.36ram

,,oo(O)
0.5
0.6
0.7

-.7s7 .549 1.4s
-.344 11.211.273 1.z6
-.214 I 1.23 I .172 1.25
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where

r o i][A,I= A_/u_ (A_+ a_7_/u_ (28)
LA,.-u,oB+a_T A2,

Equation(21)continuestodefinetheboundaryconditions,
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Table 4
citation

• .36 - L06 •478

o.6 .36 i-.584 t .3_
0.7 .36 -.4110 I .364
0.5 .72 -1.12 ,505

•72 -.680 I .382

First-natural-frequency elgenvalues corresponding to axial ex-

g_1 wn• 1 1.16

.878 .706

.740 .541

.912 1.23

.829 .746

.740 .568

and an eigenvalue is obtained when the determinant of equation
(27) is zero•

Numerical Results

Introduction. Figure 6 illustrates the pump-impeller and
shroud geometry used by Bolleter et al. (1987) in their test
program for radial force coefficients. Their tests were at best
efficiency point (BEP) with the pump running at 2000rpm,
while developing 68m of head and 1301/sec of flow rate. The
impeller has seven blades and an impeller exit angle of 22.5
deg. The test fluid is water at 80°F. For the present study, AP
across the impeller is assumed to be 70 percent of the total
head rise of the stage. Based on pitot-tube measurements,
impeller exit tangential velocity is about 50 percent of the
impeller discharge surface velocity; hence, u_o= 0.5.

Both walls of the annulus are assumed, to be smooth and
represented by Yamada's (1962) turbulence-coefficient test
data: mr=ms= -0.25, nr=ns=0.079. The inlet loss for the
annulus, _, is assumed to be 0.1. The discharge coefficient for
the seal is calculated iteratively as follows. With an assumed
Cde, equations (10) through (13) are used to calculate the leak-
age through the impeller annulus and the pressure and tan-
gential-velocity upstream of the seal. The seal is then analyzed
(with the same equations) using the calculated seal inlet pres-
sure and tangential velocity to determine leakage and Cd,. The
iteration continues until the leakage predictions for the exit
seal and the impeller annulus agree. Table 1 below provides
zeroth-order solutions.

Eigen Solution Results Corresponding to Lateral Excitation.
Table 2 contains the complex eigenvalues a = o + jizd =
-/'¢, + j,.,nx/i":_ for the lowest-frequency eigenvalue. Re-
sults are provided for both nominal (C, = 0.36ram) and double
radial seal clearances. Observe that the damped natural fre-
quency _d ranges from about 20 percent to 30 percent of run-
ning speed. Starting guesses for the eigenvalues were
t_o= 0 + 0.4j, because the lowest-frequency peaks in Fig. 4(a)
are around f= 0.4. Observe that the calculated ei_genvah_es are
entirely consistent with the results of Fig. 4(a); specifically,
the solutions are stable and highly damped, the damping factor
_"decreases as u00(0) increases, and both _n and the f value
corresponding to peaks in the foq curves decrease as us0(0)
increases. The results are observed to be relatively insensitive
to changes in the exit-seal clearance.

Figure 7 contains the complex eigenvectors for the
C,= 0.36mm. The tJst(s) vector has a peak amplitude at the
inlet and exit with a small phase shift at the inlet. The riot(s)
magnitude and phase tend to increase steadily with increasing
s. The.b,(s) magnitude increases steadily with increasing s until
about s= 0.9 and then drops abruptly as it approaches the exit
seal. The sharp change in u,l and Pl between s = 0.9 and s = 1.0
is caused by the sharply convergent flow path, illustrated in
Fig. 5, as the flow approaches the exit seal. Note that the phase
of _3stis near zero until it approaches the exit and then drops
rapidly. The rapid phase shift at the exit is indicative of the
large energy dissipation associated with the exit discharge seal.

Table 3 contains eigenvalues for the second-natural-fre-
quency eigenvector. Again, the damping factor and undamped

natural frequency drop as us0(0) increases. Figure 8 illustrates
the complex eigenvectors for these eigenvalues. Comparing
usj(s) in Figs. 7(a) and 8(a) shows similar mode shapes; how-
ever, the peak amplitudes increase with increasing u_0(0) for
the first eigenvector but decrease with increasing uoo(0) for the
second eigenvector. The phase of tJ0_(s) increases for the first
eigenvector with increasing s but decreases for the second ei-
genvector. The/31(s) amplitudes are similar for both the first
and second eigenvectors; however, their phase behavior is quite
different•

Diligent searches revealed no eigenvalues with natural fre-
quencies below the first eigenvalue or between the first and
second eigenvalues.

Eigen Solution Results Corresponding to Axial Excitation.
Table 4 contains the first-natural-frequency eigenvector cor-
responding to axial excitation for C, = 0.36, 0.72mm. As with
the earlier results of Table 2, the damping factor and undamped
natural frequency both drop as u00(O) increases. Also, the re-
suits are relatively insensitive to changes in seal clearance. The
undamped natural frequencies are higher for this type of mode
shape than for the corresponding lateral-excitation mode
shapes.

Figure 9 illustrates the mode shapes corresponding to axial-
excitation. Comparing Figs. 7 and 9 shows a pronounced dif-
ference for the _,t(s) eigenvectors. For the axial case, _qj(s) is
real and, in fact, coincides with the u_o(s) solution. This result
is predicted by equation (28) since t_s_is uncoupled from tJet
and ,bj and satisfies the zeroth-order continuity equation. The
uet(s) eigenvector magnitudes of Figs. 7(b) and 9(b) are similar;
however, the magnitudes are much larger for the axial-exci-
tation modes. The amplitude curves for ,b_(s) are similar in
Figs. 7(c) and 9(c); however, the axial excitation cases are much
larger and are relatively insensitive to changes in uoo(0).

Discussion of Approach and Results

The eigenvalues presented in Tables 2 through 4 seem to be
entirely consistent with the forced-response curves of Figs. 4
and 5; specifically, the natural frequencies generally lie where
they are expected, and they and their damping factors vary
with uso(0) as expected. The eigenvectors of Figs. 7, g, and 9
are difficult to comment on, given that (to the writer's knowl-
edge) no one has tried to either calculate or measure this type
of eigenvector in the past. The mode shapes clearly satisfy the
boundary conditions and are consistent with the damped ei-
genvalues to which they correspond.

The homogeneous versions of equations (14) do not (to the
writer) represent an obvious eigenvalue problem, and attempts
to formulate a recognizable eigenvalue problem by conven-
tional means were not successful. Specifically, because the
governing equations (20) are linear, one can differentiate and
substitute to obtain a single third-order equation in:one of the
variables. Unfortunately, this approach makes the boundary-
condition implementation very difficult. Moreover, the final
governing equation is itself not amenable to classical eigen-
approaches such as central-difference finite differences; such
approaches have proven to be notably unsuccessful for fluid
mechanics problems.

The approach used here to obtain eigenvalues converged
rapidly, but the convergence characteristics suggest that the
convergence space is not convex. Specifically, full correction
steps predicted by the secant algorithm could not be taken.
Generally speaking, correction steps would be reduced by a
factor of ten at the outset. The residual error in IDe[, the
magnitude of 1),, would then be rapidly reduced until an ov-
ershoot was observed. The problem would then be restarted
at the oti corresponding to IDel min, the secant correction
factor reduced by an additional factor of ten, and a further
rapid incremental reduction in IDel would again be realized
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until an overshoot was again experienced. By following this
"restart" approach, the eigenvalues could be calculated to any
accuracy desired.

The developed algorithm would appear to be applicable to
a range of fluid perturbation problems where the fluid me-
chanics might have an appreciable influence on "acoustics";
specifically, in circumferences where convective acceleration,
Coriolis acceleration, and/or centrifugal acceleration terms are
not negligible. It would be adaptable to more strictly numerical
CFD approaches such as the control-volume-based methods
of Patankar (1980).

The eigensolutions which were calculated in this work were,
as specified, stimulated by forced frequency-response solu-
tions. Obviously, more general solutions could be calculated;
e.g., solutions of the form

us== u,_ccosnO+ u,j,sinne

ue_= uez_cosnO+ uez,sinnO

Pn =pnccosnO +pn,sinnO

with n an arbitrary integer, could be assumed for eigenvaiue
solutions. The solutions developed and presented here only
correspond to n = 0,1. Also, while the presented solutions cor-
respond to clearance-change excitation due to impeller motion,
these modes could be excited by strictly fluid oscillation.

For axial excitation, Childs' (1990) work indicates that the
impeller-shroud forces have a negligible influence on pump
vibrations. However, Williams and Childs (1989) demonstrate
that "fluid resonance" phenomena can have an appreciable
influence on lateral rotordynamics of pumps.
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APPENDIX A

Perturbation Coefficients

Ais= [os(l - ms) + o,(1 - mr)lu2_o/2ho

Az,= _2ueo d_r/b2 + [o,(mr + i)_5o+ as(ms + l)#t]uso/2
r as

duso

A3s =---_--+ [(2 + mr)a, + (2 + ms)as] Usa/2

- [(1 + mr)o,Bo(Ugo- r) + (1 + ms)a_lUeo]/2

2,4 te= Uso[(l - mr)(uso - r)a, + (I - ms)ueoo,]/ho

2A2a = usa(o, + as) + a,(mr + l)(ueo - r)_o
Usadr

+ cr,(ms + l)Uao_l + 2r

ZA_ = o,(Ueo- r)[mr- (l + mr)(3o(Uoo- r)/Uso]
+ asUeo[mS- (1 + ms)fJtUeo/U,o]

_o= (uao- r)l b2uso{1+ [(ueo- r)l buso]2}

131= uoo/b2uso[1+ (Ueo/bu,o) 2]
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Influenceof ImpellerShroud
Forceson TurbopumpRotor
Dynamics
The shrouded-impeller leakage path forces calculated by Childs (1987) have beer:

i analyzed to answer two questions. First, because of certain characteristics of th_
• results of Childs, the forces could not be modeled with traditional approaches.

_ Therefore, an approach has been devised to include the forces in conventiona,

rotordynamic analyses. The forces were approximated by traditional stiffness, damp-

. ing and inertia coefficients with the addition of whirl-frequency-dependent direct

. and cross-coupled stiffness terms. The forces were found to be well-modeled with

this approach. Finally, the effect these forces had on a simple rotor-bearing system

was analyzed, and, therefore, they, in addition to seal forces, were applied to a

Jeffcott rotor. The traditional methods of dynamic system analysis were modifies

to incorporate the impeller forces and yielded results for the eigenproblem, frequency

- response, critical speed, transient response, and an iterative technique for finding

the frequency of free vibration as well as system stability. All results lead to the

conclusion that the forces have little influence on natural frequency but can have

appreciable effects on system stability. Specifically, at higher values of fluid swirl

at the leakage path entrance, relative stability is reduced. The only unexpected

_ responsecharacteristicsthatoccurredareattributedtothenonlinearityofthemodel.

Introduction

The vibration of centrifugal pumps has received increasing

attention recently because of the inability of current analysis
techniques to adequately predict the dynamic characteristics
of pump designs. Failure to accurately predict vibrations has

resulted in the loss of considerable amounts of money in down
time from severe vibration problems. Massey (1985), for ex-
ample, described an eleven-stage pump that became Unstable

when its running speed exceeded its critical speed by 25 percent.
In other words, it whirled at 80 percent of running speed.
Another example occurred in the High Pressure Oxygen Tur-
bopump (HPOTP) of the Space Shuttle Main Engine (SSME)
which also whirled at 80 percent of running speed (Childs and
Moyer, 1985).

The hydrodynamic forces generated in many of the fluid-
filled gaps within the pump are well-established contributors

to the problems cited above. This article is concerned specif-
ically with the forces developed along the leakage path between
the impeller and the shroud, as shown in Fig. 1. As the fluid
is discharged from the impeller, some will return to the lower-
pressure, suction side by way of this leakage path. Leakage is
minimized typically with wear ring seals, as shown. Hydro-

dynamic forces are developed along the entire leakage path,
i.e., the shroud section as well as the seal. Note that these are

only parts of the total force on the impellei" and that the

impeller/volute region, balance drums, inducers, shaft, etc.

Contributedby theTechnicalCommitteeon Vibrationand Sound forpub-
licationin the JomtN,,u.oF VmilATioNANDAcourncs. Manuscriptreceived
February 1990.

also contribute to the dynamics of pumps, although they are
not considered here.

Unfortunately, measurements of the total force on actual

impellers have typically been obtained using pumps that have

been modified to minimize leakage path forces. However, some
results have been reported that are of importance here. For
example, research at Cal Tech (Adkins, 1976) led to the con-
clusion that the pressures in the shroud annulus contributed
from about 50 percent to 75 percent of the total stiffness acting
on the impeller. The pump used included separation rings and
an enlarged shroud clearance space to minimize leakage flow
forces.

Bolleter et al. (1985) used a rocking-arm mechanism to ver-
tically translate the spinning impeller. Their pump had normal
clearances in the leakage path; and, therefore, the forces meas-

We.It rial seals

I /' ]

baronage _ /

Rg. 1 Typical seal configurations for a multistage pump
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ured were more realistic. The results demonstrated that the
nondimensionalized cross-coupled stiffness value was about
twice that measured on the pump at Cal Tech (Jery et al.,
1984). This suggests that the leakage path region in pumps can
also reduce the stability of impeller motion. Bolleter et al.

(1989) have recently presented extensive force-coefficient re-
sults at off-design conditions.

Almost all of the analytical attempts at predicting leakage
path forces have been concerned with seals. However, Childs
has extended his previous techniques in seal analysis (1980, 81,
82a, 82b, 82c) to apply them to the flow within the clearance
space surrounding the shroud (1987). His work will be used
to model the seal and shroud forces in this article and will now
be summarized.

Childs used a bulk-flow approach to obtain the governing
equations of the flow of a differential element of fluid. In the
seal problem, three equations were required: axial- and cir-
cumferential-momentum equations as well as the continuity

equation. In the shroud problem, the axial-momentum equa-
tion was replaced by a path-momentum equation, introducing
additional terms which described the centrifugal and Coriolis
accelerations of the fluid element. After a perturbation ex-
pansion of the equations in the eccentricity ratio, the resulting
relationships were solved at various values of the whirl fre-
quency, fl. Integration of the resulting pressure distribution
acting on the shaft or shroud yielded the radial and tangential
force as functions of whirl frequency. In addition, solution
was carried out at various fluid circumferential velocities at
the shroud entrance. This variable is of primary importance
in system stability (cross-coupled stiffness). Figure 2 shows the
results of the shroud problem for three different values of the
inlet swirl velocity. The leakage path analyzed corresponded
to that used by Bolleter et al. (1985) which ran at 2000 rpm.
Figure 3 provides the dimensions of the pump and other data
of importance. The curves in Fig. 2 define force coefficients
corresponding to a circular orbit of amplitude and whirl fre-
quency ratio f. The impeller force components are linearly
proportional to the orbit amplitude A. The sharp deviations
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in the radial and tangefitial force coefficients of Fig. 2 are
caused by excitation of a ,,centrifugal-acceleration mode" nat-
ural frequency. Childs (1990) has presented results for damped
natural frequencies and eigenvalues for these modes.

Nomenclature

Cx= CQ_......_s= nondimensional di-
Fo rect damping coeffi-

cient

t'= cQ0_, = nondimensionalized
Fo cross-coupled damp-

ing coefficient

_'/,=-_ = nondimensionalizedradial and tangential
forces on the rotor

F0 = 2R,LAP = (Childs,1987)(F)

f= f] = whirl frequency ratio
cas

g=KQ0 = nondimensionalized
Fo direct stiffness coef-

ficient
K" = direct stiffness coef-

ficient which is a
function of the whirl
frequency ratio (F/
L)

/_=k._Q0 = nondimensionalized
F0 cross-coupled stiff-

ness coefficient
(Chiids, 1987)

Journal of Vibration and Acoustics

k" = cross-coupled stiff- (inlet swirl ratio)
ness coefficient (Childs, 1987)
which is a function
of the whirl fre- x, y = rectangular coordi-nates of rotor center
quency ratio (F/L) (L)

L = length of seal or ira- Z = complex rotor whirl
peller-shroud path amplitude (L)
(L) z=x+jY = complex rotor coor-

K'I= MQ_2" = nondimensionalized dinate (L)
Fo direct mass coeffi- # = phase angle of whirl

cient (Childs, 1987) from harmonic exci-

Q = rotor whirl radius tation
(L) fl = rotor whirl fre-

Q0 = clearance at leakage quency (I/T)-
path entrance (L) _, = natural frequency of

free vibration (1/ T)

_=Q = clearance ratio _s = shaft speed (l/T)L = shroud leakage path
R = rotor whirl ampli- coefficient subscript

tude (L) • = rotor coefficient
RL.s = inlet radius of subscript

shroud leakage path s = seal coefficient sub-
or seal(L) script

ilrL/s

_¢L/,=R__ s = nondimensionalized sh = shaft coefficient sub-
tangential fluid ve- script
locity at leakage none = overall coefficient
path or seal entrance subscript
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Pumpdata

shaftspeed : os : 2000 rpm

inletclearance : Qo : 3.55 mm

impeller exit angle : 22..5 o

flowrate = 130 I/see

headdeveloped : 68 m

seven-bladed impeller

working fluid is waterat 80 OF

Fig. 3 Dimensions and data for the pump tealed by Bolleler et al (Bob
later at al, 1985)

In the articles cited above, Childs initially suggested the

following conventional, linear relationship to model the forces.
It applies for small motion of the rotor about the centered
position.

(1)

If circular whirl at frequency, fi, and radius, Q, is assumed
such that

x= O cos fit, (2)
y = Q sin fit,

the radial and tangential force components can be stated

_I,FF, I -(-M_+cQ+K')

After nondimensionalizing the terms as defined in Chiids
(1987), Eqs. (3) become

= 37ff2-ef - l_
(4)

J_l - Of+ _',
#

where the definitionsof the coefficientsare included in the

Nomenclature and the other variablesare defined as follows.

p= F
2RLLAP' nondimensionalized force

_-_, nondimensionalized clearance#=
_0

f=fi, whirl frequency ratio

P

_, force coefficient.

The quadratic relationships of equations (4) are to be used to

obtain the dynamic coefficients of equations (I). Specifically,

a least-squares curve fit of the force curves will yield the coef-
ficients. This is an adequate approach for seal forces because
they, in general, do follow a quadratic trend. However, the

curves of Fig. 2 illustrate that shroud forces cannot be ap-
proximated by equations (4); and, therefore, a traditional lin-

ear model as expressed in equations (1) will not adequately
represent the forces. Although these results are unexpected,
experimental measurements made by Franz and Arndt (1986)
of impellers with inducers yielded very similar results.

Problem Definition

At this point, it is not known, assuming the force curves of
Fig. 2 are valid, how they can best be included in traditional

rotordynamic calculations of stability, response, critical speeds,

etc. To solve this problem, the present research has been con-

ducted to answer the following questions.

(I) How can the force curves found by Childs (1987) be

incorporated in the traditional rotordynamie analyses
of system response, stability, critical speeds, etc.?

(2) What effects do the forces have on a rotor-bearing

system with respect to stability, natural frequencies,
imbalance response, etc.7

Before answering these questions, observe that the forces pre-

sent no new problems in a transient analysis because they could
be applied as whirl-frequency-dependent forcing functions to

a simple rotor model such as that developed by Jeffcott (1919).
Although the force components are linearly proportional to

the orbit amplitude, the equations of motion would be non-

linear because the forces depend on the whirl frequency, de-
fined kinematically as

f__o_ x_-.v_ ,
- w,- w,(x2 + fl) (5)

but this could be handled by integrating the equations of mo-

tion numerically with traditional methods. However, a tran-

sient analysis alone is not sufficient to obtain an understanding

of the forces, and this is why answers to the questions posed
above are necessary. The following section describes the model

used to analyze the shroud forces, and results are then given

for the eigenvalue problem and frequency response, respec-
tively.

Rotordynamic Model

As shown in Fig. 4, the model is a Jeffcott rotor (Jeffcott,
1919) under the application of seal and shroud forces. The

rotor itself represents a double-suction impeller, yielding two
symmetrical leakage paths. In summary, the forces on the rotor

are the shaft stiffness, two identical seal forces, and two iden-

tical shroud forces. The mathematical representation of each
force will now be discussed.

A 90.7 kg (2001b) rotor is assumed. In addition, the shaft

stiffness used (Ash-- .2987 MN/m) makes the natural frequency

of forward whirl (to be defined later) equal to 80 percent of

shaft speed. This choice is not completely arbitrary since this

frequency corresponds to that observed in the examples cited
in the Introduction (Massey, 1985; Childs and Moyer, 1985).

The seals modeled are smooth, wear ring seals with a clear-

ance and diameter of .36 mm and 236 ram, respectively. The
least-squares approach of Childs described earlier has been

carried out, and the resulting dynamic coefficients are given
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Fig. 4 Jelfcott-based, double-suction impeller leakage path model

Table 1

"StL MI C, e,

kg Ns/m Ns/m

.5 .3111 3356.0 78.6

.6 .3398 2167.0 89.6

.7 I .3714 970.9 101.3

Coefficients for one wear ring seal

Ks k,

MN/m MN/m

.6121 .4628

.5443 .4611

.4755 .4455

in Table I. The analysis used has at times under-predicted the
true value of the direct stiffness. Therefore, Ks is doubled when
the coefficients of the entire model are assembled. This mod-
ification of Ks has no influence on the results, since the shaft
stiffness is selected to yield a desired system natural frequency.

As described in the introduction, conventional stiffness,
damping and mass coefficients cannot completely describe the
impeller-shroud forces calculated by Childs and shown in Fig.
2. Therefore, the following method has been devised. First, a
curve fit of the force curves is carried out, yielding dynamic
coefficients which describe the quadratic variation of the forces
with respect to the whirl frequency ratio as described above.
The difference between these curve fits and the actual force

curves is modeled by direct and cross-coupled stiffness coef-
ficients which are functions of whirl frequency ratio. The math-
ematical equivalent of this approach will now be discussed.

The following modified forms of equations (4) express the
method with which the impeller-shroud forces are modeled.

= _da- eL/- [RL+ R" ¢J')]

= - CL/+ [& + P tf)], (6)
4

where/_" and _" representthe nondimensionalized deviations
between the force curves and the approximating quadratic
expressions.Figure 5 illustrates/_" and E°, respectively. Note
that, although they represent forces proportional to displace-
ment, they are not traditional stiffness coefficients since they
are functions of whirl frequency ratio. Separating the force
coefficients into whirl-frequency-independent and whirl-fre-
quency-dependent terms doesnot introduce any approximation
to the force definitions. Equations (1) are now rewritten as

[ K,+K'u') k +J,'Cr)]+ -kL-k'(f) KL+A"tf)J(y)" (7)

In a mathematical sense, the tangential force accounted for
by k* could be modeled as a damping coefficient; however,
the result of Fig. 5(b) confirms the wisdom of modeling the
deviation of the tangential-force coefficient by a whirl-fre-
quency-dependent cross-coupled-stiffness-coefficient. Specif-
ically, k ° oscillates about zero and approaches zero as the inlet
swirl ratio is reduced. Finally, observe that equations (7) are,

0.!

0.0

--9.!

-2

Fig.S(J)

-I 0 1 2

Whirl FrequencyRatio (NO)

Dapendenoy of K" on whld frequency ratio

°3 / 'nk,S_" [
1"° I
: I

1-'-.'1

1

o.ot -0.1

-02 , - ,

-2 -I 0

_g. s(b)

I 2
Whirl Fmqumc? RJuo (NO)

Dependency of K" on whld frequency ratio

Table 2 Approximating coefficients for one leakage path

M/, U/, cL Kz, kL
kg Ns/m Ns[m IMN/m MN/m

3.469 2037 969.9 .06781 .3137

in general, nonlinear differential equations. To understand this
statement, recall that the general definition of the whirl fre-
quency ratio, f, is given in equation (5). If the rotor precession
has a constant radius and rate, f is a constant and the motion
is linear. However, for general motion, f is variable and a
function of the motion.

After performing the asymptotic least-squares curve fit to
Fig. 2, the resulting coefficients of equation (6) are given in
Table 2.

in summary, the following equations represent how the over-
all coefficients for the model are defined.

M= M, + 2(Ms + ML)
c=2(Cs+CD +-_

c=2(c,+cL) (8)

K = K_ + 2(ZK, + KD + 2K" =K+2K"
k= 2(ks + kL) + 2k" =k+ 2k'.

Particular coefficients are doubled because there are two
seals and two leakage paths in a double suction pump. The
quantity, C, must be added to the model to yield reasonable
stability. If the eijenvalues of the overall system are obtained
without adding C, the system is found to be unstable. There-
fore, by adding another damping term (C= 10,422 Ns/m),
reasonable stability, which is consistent with operating pump
experience, is ensured. The following equation represents the
complete model used to model the forces on the rotor.
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.7

Table 3 Coeiflclents _r overall model

M C c

kg Ns/mi Ns/rn

98.240 21208 2097.1

98.298 18830 2119.1

98.361 16438 2142.4

K k

MN/m MN/m

2.8827 1.5549

2.6115 1.5494

2.3363 1.5184

Table 4
and without K" and k"

_,L -- with
_j

K ° and k"

.5 .747

.6 .777

.7 .800

Natural frequencies of free vlbretlon for the pump modal with

w...._nwithout
6.t I

K" and k °

.727

.724

Percent

Decrease

2168%
6.82%

.715 10.63%

°1 I

i

-80 0

-2 -I 0

Fig. 6
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Fig. 7 Imaginary part of the elgenvaluas for the forward.whirl mode

[,<<,> {::,7+ -k(f) K(/)J (yJ = . (0)

Table 3 contains the numerical values for this analysis. These
coefficients combine to make the damping for the uncoupled
system, defined by C/2x/-K-M, equal to 63 percent, 59 percent,
and 54 percent of critical damping for the three swirl ratios
shown, respectively. Again,/_" and _r, are illustrated in Fig.
5 and are defined analytically with cubic-spline curve fits.

Natural Frequency Determination

The characteristic equation for Eq. (9) is

[M_2+C_+K(f)12+[c_+k(f)lz=O, (10a)

where _= s/,_,.For each whirl-frequencyratiof,two pairsof
complex conjugaterootsofthe form

_=a_./"A_; i= 1,2 (lOb)

can be calculatedcorrespondingto forward and backward
whirlingmodes. The concernhere isfindingthe naturalfre-

Table S Real parts of the eigenvalues for the model with and without
K" and k"

.5

.6

.7

Real part with Real part without Percent

K" and k" K" and k* Decrease

1/sec 1�see
-55.9 -60.3 7.87%

-31.1 -47.2 51.80%

-13.8 -34.5 150.00%

quency for forward whirling motion. Figure 7 illustrates the
eigenvalue solutions to Eq. (10a) versus f.

Free whirl of the rotor occurs only when the imaginary pan
of an eigenvalue equals the whirl frequency ratio f in Fig. 7;
i.e., Xz=f. The three points at which the Xz=f line intersects
the k(.f) curves defines the forward-whirl natural frequencies
for the three inlet swirl ratios. The real part of the eigenvalue
at this natural frequency defines the rotor's damping.

To find the "natural frequency" and damping of free whirl,
the following iterative technique has been used. First, a whirl
frequency ratio is assumed. From this value, the corresponding
values of K and k are obtained from the data shown in Fig.
5 from which the eigenvalues are found using Eq. (10). These
first two steps are equivalent to finding a point on the curves
of Figs. 6 and 7. The imaginary part of the forward-whirl
eigenvalue is compared to the whirl frequency used. If they
are the same, the natural frequency at which free vibration
takes place is defined. If they are different, the imaginary part
of the forward-whirl root becomes the assumed whirl frequency
ratio, and the same steps are carried out until convergence
occurs. Note that this calculation procedure yields the damped
natural frequency for the system.

Tables 4 and 5 show results of the above algorithm. Also
included are the eigenvalues of the same model neglecting K"
and k', which correspond to a pure quadratic approximation
of the leakage path forces as in equations (4). The eigenvalues
illustrate at least two important conclusions about the effects
of the values of K" and k'. First, the natural frequency in-
creases when K" and k" are included as well as when the swirl
ratio is increased. The variation of K" in Fig. 5 explains these
observations. More importantly, the percent differences be-
tween the two models show that the values of K' and k' have
very little effect on natural frequency. Second, stability is re-
duced when K" and k" areincludedand when theswirlratio
isincreased.The variationofk" inFig.5isthecauseof these

observations.Finally,thepercentdifferencesbetweenthetwo
modelsshowsthatK* and k' cancauseappreciablereductions
inrelativestability.
To show thatthe stabilityand frequencyof freevibration

are determinedonly by theroot obtainedfrom the iterative

approach describedearlier,theequationsof motion (9)were
integratedina seriesof transient,free-vibrationsimulations.
Initialconditionswerean initialdisplacementof.127mm (.005

in)and velocityequaltoRLws (synchronouswhirl).Figure8
includesthe resultingorbitand a time historyof the whirl

frequencyratioforfreevibrationand an inletswirlratioof
0.7.As shown, therotorexecuteda well-dampedspiralorbit.
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12.5 percent reduction in direct damping

The whirl frequency ratio of the orbit was exactly 0.8, which
corresponds to the natural frequency found earlier. The other
two swirl ratios yield similar results.

To verify that the stability of the model is described only
by the real part of the eigenvalues obtained with the iterative
approach described above, the direct damping coefficient was
reduced by 12.5 percent producing a range of unstable eigen-
values as shown in Fig. 9 where the real part of the forward-
whirl root is positive between whirl frequency ratios of 0.41
and 0.57. The natural frequency of this altered model corre-
sponds to a stable eigenvalue and is .82514,. Integration of the
equations of motion were altered to include a harmonic forcing

0.02'

0.01

J

_ 0.1_

_ ..0.01

4).02

x-C, oonJu,am.51uo._l b_ Ck=nmoc (HD)

Fig. 10(a) Rotor orbit during harmonic excitation at 50 percent of shaft

speed and 12.5 percent reduction in dlrecl damping
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Fig. iO(b) Time history of rotor whirl frequency ratio dudng harmonic
excitation at 50 percent of shaft speed and a 12.5 percent reduction in

direct damping

!0 3t

0

. . m i i •

I 2 1 4
Fml_.mcy_ h_Lr_Speed (T_rD_

Fig. 10(@ FFT of the response of the rotor during harmonic excitation

at 50 percent of shall speed and • 12.5 percent reduction in direct

damping_

also tried. Using a stable value of 0.7ws, for example, the
response did not behave in the same manner; instead, the orbit
reached a steady state circuliii" p-afli _i__hi_-/tx¢iiaii-6h-_requeney
as would be expected from a linear system. However, forcing
at .375w,, thecqaaracte_ of the results from forcing at .5,,
occurred again, as can be seenin Fig. I 1, which again contain

function with an amplitude of 5N which forced the rotor in a _,time his_or);of the whirl frequency ratio and an FFT
circular direction at a frequency of .Sw,. Figure 10 includes
the resulting orbit, whirl frequency ratio time history, and a
Fast Fourier Transform (FFT) of the x-coordinate, respec-
tively. Even though the forcing frequency was within the un-
stable range of frequencies, the figures show that the system
was stable in that its orbit did not grow without bound. The
loops and limit cycle behavior are the results of the nonlin-
earities in the model. TheFFT shows that the steady state orbit
consisted of response at both the forcing frequency, .Sw,, and
the natural frequency, .825%. Other forcing frequencies were

of the response. Only forcing frequencies below and within
the unstable zone resulted in this behavior. Only when the
direct damping coefficient was reduced until the natural fre-
quency corresponded to an unstable eigenvalue did the re-
sponsebecome unstable in a linear sense,where the orbit grew
without bound at the natural frequency. The fundamental
result from this analysis is a verification that a range of whirl
frequencies yielding eigenvalues with positive real pans does
not cause the system response to grow without bound unless
it includes the system natural frequency. In addition, the non-

Journal of Vibration and Acoustics OCTOBER 1991, Vol. 113 1 513



Fig,11(_
speed •nd I 12.5 percent reduction in direct damping

o mo 61 -- .,thK*.k" I

o.00_ g $

_4

o._) 3

- 0000 000_ 0 0

x-Clim/lll_li.oud lltlll _ (ND) -1 0 I 2

Rotor orbit during harmonic excitation St 37.5 percent of shaft whirl Fre4ue_y RJu_o(ND)
Fig. 12 Frequency response: whirl amplitude

2'

I •

4

-5

OJO 0.$ 1.0 1.5
(*nO

Fig. 11(b1 Time hi•tory of rotor whirl frequency ratio during harmonic

excltallon at 37.5 percent of shill speed and I 12.S percent reduction
In direct damping

0.005

0,003

N

!:![
0 '2 3 ,

Fig. 11(6") FFT of the re•pon•e of the rotor during harmonic excitation

It 37.5 percent of •haft •peed and • 12.5 percent reduction in direct
damping

linearitiesofthesystemcan causea limitcycletooccurunder
certainconditions.

Finally,thecriticalspeedoftherotorcannotbe calculated
unlessforcecurvesareavailableatothershaftspeeds.Inthis
case,the naturalfrequencyiscalculatedwith the iterative
method justdescribed,but at a number of shaftspeeds.A
plotofnaturalfrequencyasa functionof shaftspeedisthen
drawn, analogous to "critical speed maps" in fluid-film bear-
ing analysis. The critical speed is defined as the speed where
the natural frequency is equal to the shaft speed.

Frequency Response

As discussed earlier, the following are the equations of mo-
tion of the model

+

-k(f) K(f) = r_sinflt3'
(11)

200'

100"

,o

L* 0
<

-100

-200'
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Fig. 13
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Frequency response: phase ingle

where the right-hand side represents a harmonic forcing func-
tion appropriate to frequency response analyses. As in tradi-
tional methods, the transient solution is assumed to decay with
time, and only the steady-state response of the rotor is con-
sidered. Obviously, frequency response solutions are only valid
when the system is stable, precluding the type of response
illustrated in Figs. 10 and I I. The forcing frequency is defined
by fl which has been used to represent whirl speed. Since the
steady-state motion is assumed to occur at the same frequency
as the excitation, this should not cause confusion. Note that
the model is now linear because the whirl frequency ratio and,
hence, the stiffnesses are constant. Multiplying the second
equation by the complex number i, the equations can be com-
bined into one in terms of the complex variable z.

Mi + (C- ic) k + (K- ik)z=Fe 'u'. (12)

Assuming steady-state motion of the following form

z= Re_*, (13)

whereR denotesthewhirlamplitude,and ¢ isthephaseangle
yields

R K

F/K 4[K_MI_ +cflI2 +[C_I_k]_ (14)
_,r k-cn l

Equations (14) were solved using the present model data,
and the results for a swirl ratio of 0.7 are shown in Figs. 12
and 13. Also included are the same results for the model with
K* and k* neglected. Again, in obtaining frequency curves as
shown in Figs. 12 and 13, the stiffness terms must be calculated
at the corresponding whirl frequency ratio.

The swirl ratio of 0.7, used in Figs. 12 and 13, exhibited the
largest variation in amplitude and phase at the whirl frequency
ratio of .80, the system natural frequency. An amplitude dif-



ference of about 60 percent is shown between the curves, sug-

gesting that K* and k ° have significant influence on the system

primarily at this frequency. The swirl ratios of 0.6 and 0.5
exhibited similar but decreasing results in both the amplitude

and phase curves, having differences in amplitude at the peak

value of 35 percent and 6 percent, respectively. In fact, the

curves were almost identical in the case corresponding to a

swirl ratio of 0.5. Note that these resonance peaks occurred

in all cases at the corresponding natural frequencies found in

the previous section, further verifying the preceding results.
The difference in the response to synchronous imbalance ex-

citation (f= l) between the two models is small, and this sug-

gests that the leakage path forces have negligible effects on
imbalance response. However, the presence of a subsynchron-

ous excitation near the natural frequency can result in large

increases in response amplitude when k ° is included.

Summary and Conclusions

The impeller-shroud forces have been separated into (a) con-
stant (whirl frequency-independent) stiffness, damping and
mass coefficients and (b) direct and cross-coupled added stiff-

ness coefficients which ate functions of whirl frequency. With
this approach, the model can be analyzed using traditional
techniques with a few modifications. A new iterative technique

was used in the determination of the rotor's natural frequency

and damping. The whirl-frequency-dependent stiffness terms
were seen to be convenient and effective models for the im-

peller-shroud force nonlinearities.
When the values of the added stiffness coefficients, K" and

t', were included in addition to the frequency-independent
coefficients, a number of effects resulted. First, the natural

frequency was seen to increase by a small amount, suggesting
that K" could be neglected when only the natural frequency

is important. In addition, the stability is seen to decrease when
R* is included. This effect is appreciable, so stability calcu-
lations should include k*. The frequency response analysis

showed synchronous response to imbalance is increased by the
stiffnesses although by only a small amount. Appreciable dif-

ferences in response due to subsynchronous excitation occur
only at or near the natural frequency and become negligible
at low values of the inlet swirl ratio.

The nonlinearity introduced by the whirl-frequency-de-

pendency of the force coefficients resulted in limit cycles and

nonsynchronous response in some cases.

References
Adtkins, D., 1976, "Analyses of Hydrodynamic Forces on Centrifugal Pump

Impellers," M.S. Thesis, California Institute of Technology, Pasadena.
Bollc_cr, U., Wyss, A., Welte, I., and Sturchler, R., 1985, "Measurements

of Hydrodynamic Interaction Matricesof Boiler Feed Pump Impellers," ASME,
Paper No. 85-DET-148.

Bollcter, 12., Leibundgut, E., Sturchler, R., and McCloskey, T., 1989, "Hy-
draulic Interaction and Exc_tasionForces of High Head Pump Impellers," pre-
sented at the ASCE/ASME Pumping Machinery Symposium, July 9-12, 1989.

Childs, D., Dressman, J., and Childs, S., 1980, "Testing of Turbulent Seals
for Rotordynamic Coefficienu," Proc. of Workshop on Rotordynamic Insta-
bility Problems m High Performance Turbomachinery, Texas A&M University,
NASA CP-2133, pp. 121-38.

Child.s, D., 1981, "Convergent-Tapered Annular Seals: Analysis for Rotor-
dynamic Coefficients," Symposium Vol., Fluid/Structure Interactions Turbo-
much., ASMW Winter Annual Meeting, pp. 35--44.

Childs, D., 1952a, "Dynamic Analysis of Turbulent Annular Studs Based on
Hits' Lubrication Equations," ASME Paper No. 82-Lub-41.

C'hilds,D., 1982b, "Pinite-Len_h Solutions for Rotordynamic Coefficients
of Turbulent Annular Scab," ASME Paper No. $2.Lub-42.

Childs, D., and Dressman, J., 1982c, "Testing of Turbulent Seals for Ro-
tordynamic Coefficients," Proceedings of Workshop on Rotordynamic Insta-
bility Problems in High Performance Turbomachinery, Texas A&M University,
NASA CP-2250, pp. 157-71.

Childs, D., and Moyer, D., 1985, "Vibration Characteristics of the HPO'rP
(High PressureOxygen Tutbopump) of the SSME (Space Shuttle Main Engine),"
ASME Journal of Engineeringfor Gas Turbines and Power, Vol. 107, pp, 152-
159.

Childs, D., 1987, "Fluid-Structure Interaction Forces At Pump-Impeller-
Shroud Surfaces for Rotordymunic Calculations," Texas A&M University, Me-
chanical Engineering Dept., ASME Vibration Conference, Boston, Mass.

Childs, D., 1990, "Centrifugal-Acceleration Modes for Incompressible Fluid
in the Leakage Analysis Between a Shrouded Pump Impeller and Its Housing,"
ASME JOUgNAtor' VnUU,_ONANDACOUSTICS,May 1990.

Franz, R., and Arndt, N., 1956, "Measurement of Hydrodynamic Forces on
the Impeller of the SSME," Report No. E2A9.2, California Institute of Tech-
nology, Pasadena.

Jeffcott, H., 1919, "The Lateral Vibration of Loaded Shafts in the Neigh-
borhood of a Whirling Spoed--The Effect of Want of Balance," The Philo-
sophical Magazine, Voi. 6, No. 3"/, pp. 304-314.

Jery, IL, Acosta, J., Brennen, C., and Caughey, T., 1984, "Hydrodynamic
Impeller Stiffness, Damping and Inertia In the Rotordynamics of Centrifugal
Flow Pumps." Proceedings of Workshop on Rotordynamic Instability Problems
in High Performance Turbomaphinery. TexasA&M University, NASA CP-233g,
pp. 13%160.

Massey, 1. C., 1985. "Subsynchronous Vibration Problems in High Speed
Multistage Centrifugal pumps," Proceedings of the 14th Turbomach inery Sym-
posium, TurbomachinerYLaboratories, Texas A&M University. pp. 11-16.

.Io,rnal of Vibration and Acoustics OCTOBER 1991, Vol. 113 I 515



_0 l..J-
_ I--._





Reprinted from March 1992, Vol. i 14, Journal of Fluids Engineering

D. W. Childs
Turbomachinery Laboratories,

MechanicalEngineering Deparlment,
Texas A&M University,

College Station, Texas 77843

PressureOscillationin the
Leakage Annulus Betweena
Shrouded Impeller and Its

Housing Due to Impel!er-
D,scharge-PressureDzsturbances

An analysis is presented for the perturbed flow in the leakage path between a

shrouded-pump impeller and its housing caused by oscillations in the impeller-

discharge pressure. A bulk-flow model is used for the analysis consisting of the path-

momentum, circumferential-momentum, and continuing equations. Shear stress at

the impeller and housing surfaces are modeled according to Hirs" turbulent lubri-

cation model. In the present analysis, perturbations of the impeller discharge pressure

are used to excite the fluid annulus. The circumferential variation of the discharge

pressure is expanded in a Fourier series up to order n,, where nl is the number of
impeller blades. A precession of the impeller wave pattern in the same direction or

opposite to pump rotation is then assumed to completely define the disturbance
excitation. Predictions show that the first (lowest-frequency) "centrifugal-accel-

eration '" mode of the fluid within the annulus has its peak pressure amplitude near

the wearing-ring seal. Pressure oscillations from the impeller can either be attenuated

or (sharply) magnified depending on: Ca) the tangential velocity ratio of the fluid
entering the seal, (b) the order of the fourier coefficient, and (c) the closeness of

the precessional frequency of the rotating pressure field to the first natural frequency

of the fluid annulus, and (d) the clearance in the wearing-ring seal.

Introduction

The present w-6rk is-stimulated:by experiences with the SSME

HPFTP (Space Shuttle Main Engine, High Pressure FuelTur-
...._b-op'u'mp) _;(_ar]ng:rifig S-da_fs. _ s-tepped, 3-cavity, tooth-on-

rotor, ]abyrin_-seal design is used. The stator for the seal is
: made _rom_t_L-F_ =/_Iastic that is somewhat similar to nylon.

In some cases, post-test inspection" of the stator element has

reveaied that ]nt_r_t:-pdi//is-in ffi_e stator :r_aterial have melted
and then resolidified, despite being in contact with liquid hy-

drogen. One hypothesis for this exceptional outcome was that
the material had been subjected to cyclical stresses which gen-
erated heat due to hysteresis. Because of poor conduction

properties of the material, the heat could not be dissipated,
the temperature rose, and melting resulted. "What pressure
oscillations are driving the cyclical stresses?", is an obvious

question in reviewing this scenario. The present analysis ex-
amines "centrifugal-acceleration" modes, arising between the

impeller shroud and its housing and driven by pressure oscil-
lations from the pump, as an answer to this question.

_The work reported herein was supported by NASA Marshall Space Flight
Center under contract NAS 8-37821; contract technical monitor:James Cannon.

Contributed by the Fluids Engineering Division for publication in the JouRlq_o.
or FLtnVSE]qGZ_EEVaNG.Manuscript received by the Fluids EngineeringDivision
August 20. 1990.
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Figure 1 illustrates an impeller stage of a multi-stage cen-
trifugal pump. Leakage along the front side of the impeller,
from impeller discharge to inlet, is restricted by a wearing-ring

seal, while leakage along the back side is restricted by either

an interstage seal or a balance-piston discharge seal. The pres-
ent analysis considers perturbed flow in the leakage paths be-

tween the impeller-shroud surface and its housing.

Prior analyses by the author of those annulli have been
concerned with lateral (1987, 1989) and axial (1990a) reaction

forces developed by the impeller shrouds as a consequence of
harmonic clearance changes due to impeller motion. These

analyses have been based on "bulk-flow" models which neglect
the variation in the dependent variables across the fluid film.
The model consists of the path and circumferential momentum

equations and the continuity equations.
The analyses cited have yielded force and moment coeffi-

cients due to impeller motion but have also predicted "reso-

nance" phenomena, which are caused by the centrifugal-
acceleration body forces present in the path momentum equa-
tions. An algorithm was developed (1990b) to calculate the

complex eigenvalues and eigenvectors associated with these
resonances. In the present analysis, the harmonic response of
the flow within the annulus is examined due to time and cir-

cumferential variations in the discharge pressure of the im-

peller.
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Fig. 1 Impeller leakage paths

X
Fig. 2 Impeller surface geomelry

the initial point Ri' Zi to an arbitrary point R, Z is denoted

by S and defined by

S= 1 + du = i + du (1)
Zi R i

Geometry and _K_i_'.n_e_mati__ .... ==_ _= _ :_ :_;; __:= - _:_ _ _ _
.. ....... I_ _e= e/:(uaffons _cla foild_v_ _the path coordinate S and

Figure l illustrates the annular leakage paths along the front .... _, ....... _ =_ ......................
........ • .... •.... ,__ _r _ _..,. ..... angutar cooramate t_are used as independent spatial variabIes

ano oacg SlOeS oI a [ypical snrouoeu lmp¢|l¢l ul _, niu.iata_ The _:L_,_ _:= _ . . . , _==_ .... =.e cooralnates z, K ae_mtng the Impeller surface are excentrifugal pump. The present discussion concentrates on the .... .......... _ :: ii : -

flow and pressure fields within the forward annulus; however, press,ca a s parametric tunctmns of S, i.e., Z(S), R (S). The
- , • .................... 2 __ :, iengm o! tlae leakage path along the impeller face is defined

the analysis can also oe applleO tO me re,a[ ammm_, t_ .- . ..........
lustrated in Fig. 2, the outer surface of the impeller is a surface ... oy .

of revolution formed by rotating the curve R= R(Z)about f z_+t [ ['dR_2

the Z axis. A point on the surface may be located by the L, = ,!.z|_ ''[_t I + _--i\dZ] du (2)coordinates Z, R (Z), 0. The length along the curve R (Z) from

2Ahhough the leakage flow is normally up the backside of all impellers except

the last impeller, the governing equations would continue to be valid irrespective

of the now direction.

Governing Equations

Returning to Fig. 2, the path coordinate S and circumfer-
ential coordinate RO are used to locate a fluid differential

Nomenclature

A2s, A3s, A_, A3o =

b = V/Rw =

c.=

C/ _-

C,=
f = fl/co =

f° =

f+l - nl _
(nt - n2)

h= H/C_ =
H=

G=

n =

p=P/pV_ =
p,(O,t) =

p,(O,t) =

coefficients introduced in Eq. (12)
nondimensional velocity ratio

discharge coefficient for the exit wear-

ring seal introduced in Eq. (7)
initial (s = 0) clearance (L)

exit seal clearance (L)

nondimensional precession frequency

nondimensionalized precession fie-

quency yielding a maximum response

pressure

positive, dominant, nondimensional,
precession frequency predicted for an

impeller with nl blades in a diffuser

with nz blades
nondimensionalized clearance

clearance between impeiier shroud and

housing (L)

leakage-path length, defined by Eq.
(2), (L)

order of Fourier coefficient, intro-

duced in Eq. (13).

nondimensional static fluid pressure

prescribed annulus supply pressure

(impeller exit pressure)

prescribed annulus exit pressure

(impeller inlet pressure)

62 I Vol, 114, MARCH 1992
.... : : S"J .....

P = fluid static pressure (F/L 2)
R = radial coordinate (L)
R_ = initial (s = O) radius (L)

r= R/R_ = nondimensionalized radial coordinate

R_=2HU,/_ = path-velocity Reyno!dsnumber

S = path coordinate introduced in Eq. (1),
(L)

s=S/Ls = nondimensionalized path length
T=Ls/V_ = representative transit time for fluid

traversing the leakage path (7)

u, = U,/V_ = nondimensionalized path fluid velocity
us = Uo/R,w = nondimensionalized circumferential

fluid velocity
V_ = initial (s= 0) path fluid velocity

= perturbation coefficient

= pump running speed (7-_)

fl _ excitation frequenc 7 (7- _)
p = fluid density (M/L _)
0 = circumferential coordinate

o,, o, -= normalized friction factors, defined by
Eq. (! 1)

r--rt = nondimensionalized time

= entrance-loss coefficient introduced in

Eq. (7)

= kinematic viscosity (LZT - _)

Overbars denote complex variables; see Eq. (16). Subscripts 0
and 1 denote zeroth- and first-order solutions, respectively,

Transactions of the ASME



element of thickness H(S, 0, t). From Childs (1987), the con-

tinuity equation can be stated

-_-+_ (U,H) +_ (Ud-t) + _ V,=0 (3a)

where U_ and Ue are the path and circumferential bulk-velocity
components, respectively. The path and circumferential mo-

mentum equations are stated

OP
-H ='= = "rs_+ rsr-pH --

03

H OP
---- -- = res + VOr

R 00

U_ dR

R dS

. [au_ at:, uo au, u,) (3b)

/Due Due ue Duo UoU_OR_
+oy[-_ +-_--E+-_- _ u,+ -fi _] (3c)

Following Hirs' approach (1973), the wall shear-stress defi-
nitions in these equations can be stated

ffl$+l
2 ms

r_=--_ pU,R, [I +(Ue/U,)2]" 2

mr4. I
nr

r,, =_ pV2,R?'l l + [(U,- R_)/U,]2}--i -

/'IS ms+l

r0,=_ pUoU, R'7[I + (Uo/U,)2] 2

mrs- I
I'l r mr

re,=-_ pU,(Uo-R_o)R, { I +[(Uo-Rw)/U,]2I'--7 - (4)

where

Rs = 2HU,/p (5)

Nondimensionalization and Perturbation Analysis

The governing equations definethe bulk-flow velocitycom-

ponents (U_, U0) and the pressure P as a function of the co-

ordinates (R0, S) and time, t. They are conveniently

nondimensionalized by introducing the following variables

u, = U,/E, us = U,/R_, p = Plpv_

s=S/Ls, r= RIRi, b= Vi/R,w

r=o_t, T= Ls/V, (6)

The present analysis examines the changes in (u,, u0, p) due

to changes in the impeiler's discharge or inlet pressure. Fol-

lowing conventional notation, pressure drops at the annulus
inlet and exit are stated

P, (O,t) - P(O,a,t) = p(l + OU_(O,a,t)/2

P(L,, O, t)-Pc(O,t)=pCacU_(Ls,O,t)/2 (7)

Note specifically that the (upstream) supply and (downstream)

exit pressure are now functions of time. Assume that the os-

cillations consist of a small perturbation of the form

P,(O,t) = Pso + ePsl (O,t),P,(e,t) = Peo + _Pet (e,t)

and introduce nondimensional variables to yield the following
zeroth

po(O) =P,o- ( 1 - 0/2

p(l) =p= + Cd,z_( 1)/2 (8)

and first-order equations

P,i (e,t) -Pl (O,e,t) = ( l + _)u,i (O,O,t)

Pl (1,0,t) -Pc, (O,t) = Cd_uso(l)usl (l,O,t) (9)

555

57

175

Fig. 3 Example Impeller, Bolleter el al. (1987)

The perturbed supply and exit pressures P,i (O,t), pel(O,t) can
now be specified functions of time and provide excitation for
the perturbed flowfield within the annulus.

Expansion of the dependent variables of Eq. (3) in pertur-
bation equations yields:

Zeroth-Order Equations

(a) Path-Momentum Equation

dpo 1 (js) _o [ ____) l dho-E+ hod,
(b)

(c)

l dr] 2
;'_ssJUso=O (10a)

Circumferential-Momentum Equation

duoo Uoo dr

"--_-s + 7 _+ [a,(ueo-r) +asUoo]/2=O (10b)

Continuity Equation

rhou_o = 1 (10c)

The quantities as and a, are defined by

a,=(Ls/Ho)ks, a,=(Ls/Ho)k, (11)

where X, and X, are the dimensionless stator and rotor friction
factors:

mt¢+l

hs = nsR_[l + (uoo/buso)2]"-7

mr+ I

X, = nrR_" l I + [(uoo- r) /bu,o] 2 I

The continuity equation has been used to eliminate duso/ds
from Eq. (lOa). The momentum equations define the pressure

and velocity distributions for a centered impeller position. They

are coupled and nonlinear and must be solved iteratively. The
initial condition for ueo(O) is obtained from the exit flow con-

dition of the impeller. Zeroth-order pressure boundary con-
ditions are provided by Eq. (8).

Figure 3 illustrates the pump-impeller and shroud geometry

used by Bolleter et al. (1987) in theirtest program for radial

force coefficients. Their tests were at best efficiency point
(BEP) with the pump running at 2000 rpm, while developing
68m of head and 1301/s of flow rate. The impeller has seven
blades and an impeller exit angle of 22.5 ° . The test fluid is

water at 26.6°C. For the present study, AP across the impeller

is assumed to be 70 percent of the total head rise of the stage.

Based on pitot-tube measurements, impeller-exit-tangential ve-

locity is about 50 percent of the impeller discharge surface
velocity; hence, Ueo -= 0.5.

Journal of Fluids Engineering MARCH 1992, Vol. 114 1 63



Table 1 Zeroth-order-solution results; Ci = 3.5ram, C, =

0.36ram

ueo(O) 0.5 0.6 0.7
R_ 9377 8907 8426
Cat 2.068 2.098 2.130

rh (kg/sec) 4.448 4.225 3.997

Table 1 provides the zeroth-order solutions for new (original-

clearance) exit wearing-ring seals. The R_0 values on the order

of 10,000 are low in comparison to the circumferential Reyn-

olds number R_ = 2HUeo/v which varies along the path, but

is on the order of 250,000. These leakage results were obtained

iteratively starting with guessed values for the seal inlet values

of pressure and tangential velocities and yielding an initial

estimate for Cde. With this estimate for Cd,, the leakage is
calculated through the annulus which yields new inlet condi-

tions for the seal. Solutions are "bounced" back and forth

between the seal and the annulus until the same leakage value

is obtained for both flow paths (four-pIace accuracy).

First-Order Equations

(a) Path-Momentum Equation

Opl + uotA2s + uslA3s
Os

r 00 -_sJ =°
(12a)

(b) Circumferential-Momentum Equation

L_ 10p,+
b-if,,7- _ uo,A2e+ us,A3o

ooT aU°l+ooTUe° ou +Uso =0 (12b)+
Or r a as j

(c) Continuity Equation

au_, ooT auo, {I dr I dho'_ •
---_- +-- "77-_ + us_ 1- =0 (12c)

os r ou \ r -_s + _oo --_s )

New coefficients in these equations are defined in. Childs

(1987).

Solution Procedure: First-Order Equations

The functions Ps, (0, t), P,, (0, t) provide the boundary ex-

citation for the first-order equations. The general form for the

excitation takes the form

p_, ( O,t) =e:U (ps,c cos nO+pro sin nO)

P,, ( O,t ) = e jar (P¢,¢ cos nO + Pe,_ sin nO) (13)

where n can reasonably be expected to vary from zero (plane

wave) upwards through multiples of the number of blades in
the impeller. The form of Eq. (13) suggests that the 0 variation
in boundary pressures is defined in an impeller-fixed coordinate

system, which is precessing at the frequency ft.
The 0 and time dependency of the dependent variables is

eliminated by assuming the comparable, separation-of-vari-

able, solution format

Usl =eJfr (Usl c cos nO + Usls sin nO)

uo, = eS/" (uo,¢ cos nO+ uo,s sin nO)

P, = eSf" (P,_ cos nO + P,s sin nO) (14)

where the coefficients are solely functions of s, and

f = n/,,, 05)

is the normalized precession frequency. Substituting into Eqs.

(12) and equating like coefficients of cos nO and sin nO yields
six first-order equations in s. Introducing the complex variables

"_,=usl¢+ju_l_. "ffol=UO,_+juol_ _,=pl_+jpls (16)

reduces these real equations to three, complex, ordinary dif-

ferential equations

o
k.,°l) kP')

where

[A] =

=0 (17)

n_._bb Ls
A3o/Uso (A2o+jTT)/uso -J ruso

-- U_o 0
A3s-Buso+JTT A2_+j r

(18)

ldrldho r =,_ (f_ n _u._) (19)B=- • "_s ÷ hods'

Since there is no right-hand side to Eq. (17), the homogeneous

solution is the complete solution and can be stated as follows

in terms of the transition matrix and initial conditions

O.) (_s,(0)_

= j .,(0q (20)
_,) L_,(O))

The inlet initial condition _o,(0) is set equal to zero, and

calculation of _1(0) and _l(0) in terms of the specified bound-

ary conditions is the immediate problem at hand. Substitution

from Eqs. (13) and (14) into Eq. (9) yields

_, -_,(0)= (I+ O_,,(0)

where

_,(I)-Pc, = Ca,.U_o(1)u_,(I)

-_, = Ps,c + JPm

From Eq. (20)

_,,(I)= _,,(l)_st(0)+ _t3(1)p,(0)

p,(1)= _3l(I)us|(0)+ ¢}33(1)pI(0)

Hence, from Eq. (21)one obtains

[ .,. l ]_31(1 - Cdd_(I)_H(1) _(1)- Cad_(l)_(l)

Inversion of this equation yields

_,(0)) z_,

(21)

(22)

(23)

x !.._,(O)j = (fie,) (24)

Z'2] IP_-s'"_ (25)

Ps, and _e_ cannot be specified independently, and a relation-

ship between the two cannot be established without a knowl-

edge of the fluid system beyond the current terminating orifices.

For the purposes of this discussion, the arbitrary choice

_,=I, _,,=0

is made to examine the influence of pressure perturbations at

the impeller exit (annulus inlet). The resulting set of initial

conditions for Eq. (20) is then

-:,(o) ) t.z_, )

The complete solution along the impeller is found by evaluating

Eq. (20) for s_[0, 1].
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Fig. 4 _l(s) complex eigenvector from Chllds (1990b); n = 1

Numerical Results. Childs' (1990b) analysis yields complex
eigenvalues _ and eigenvectors usl(s), usl (s), _(s) for the

system modeled by Eq. (12). Figure 4 illustrates the amplitude

and phase for the first (lowest-natural-frequency) eigenvalue
for n = 1; us0(0) = 0.5, 0.6, and 0.7. Observe that the peak-
pressure amplitudes lie near the wearing-ring seal, which is
consistent with the internally-melted HPFTP wearing-ring-seal

results cited earlier. Forced, harmonic-response solutions de-
veloped in this study due to impeller-discharge-pressure oscil-
lations also show the largest pressure oscillations to occur near
the wearing-ring seal (s = 0.95); hence, results presented here

focus on _1(0.95). This peak-pressure-oscillation location is
very near the exit-wearing-ring seal of Fig. 3. The first question
to be addressed here is, "How does _1(0.95) depend on n, f,

and C,?"
Figure 5 illustrates the amplitude and phase of_1(0.95) versus

ffor C, = 0.36mm, n = 5, and u0o = 0.5. As will be explained
later, the choice n = 5, arises because of the number of impeller
and diffuser blades used in Bolleter et al.'s (1987) pump. The

phase results indicate that numerous resonances exist for po-
sitive values off. However, only the first resonance experiences

significant amplification. The remaining fluid modes are heav-

ily damped.
Figure 6 illustrates I_,(0.95) I for C, = 0.36ram, n = 5, and

u00(0) = 0.5, 0.6, and 0.7. The peak-response frequency in-

creases as u00(0) is increased from 0.5 to 0.6, and a secondary
peak appears around f = 2.5. Increasing u0o(0) from 0.6 to

0.7 causes an additional peak to appear.
Figure 7 illustrates 1_1(0.95)1 for C, = 0.36me, use(0) =

0.5, and n = 0, 1, 3, 5, and 7. The response is heavily damped
for n = 0, rises sharply as n is increased to one, but then
remains relatively constant as n ranges upwards over 3, 5, and

7. Figure 8 repeats the results of Fig. 7, except for worn clear-
ances; i.e., C, = 0.72me. Comparisons of Figs. 7 and 8 show
that doubling the clearances reduces pressure amplification and

0.20-

_O. lS

<

_0.10

Eo.05

NONDIMENSIONAL EXCITATION F_EQUENCY

Flg.5(e) I_I(0.95)Iverlual;C, = 0.36mm, _(0) = 0.5,n = S

Fig. 5(b)

200 -

_ o

-1_

-"_-. 2"_-'5:2_"_Je"'_'2_'":i'2'_'"_'."6'fi2NTe'.0
NONDIMENSIONAL EXCITATION FREQUENCY

Phase _(0.95) verSus f; Cr = 0.36mm, u_o(O): 0.5, n = 5

8,0"

_6 0 U_hO
"

---0.5_0.6
--0.7

_4.0"

E2.0

0.o/ .........x..........................................................
-4.0-2.0 0.0 2.0 4.0 6.0 B.0 10.0

NONOIMENSIONALEXCITATION FREQUENCY

Fig. 6 l_(0.05)1 versus f; C, ,. 0.36ram, n : S, and u_(O) : 0.5, 0.6,
end 0.7.

slightly elevates the peak-amplitude-excitation frequency f'.

Table 2 shows f° versus n for the new(C, = 0.36me) and
worn seals(Cr = 0.72me). Note that f" increases more-or-less

linearly with increasing n.

The questions which now arise are: In a real pump, what
value of n is likely to arise in Impeller-pressure-discharge pat-
terns, and what precession frequency is most likely to be present
and dominant? Answers to these questions have been provided

by Bolleter (1988), who presents an analysis for the pressure
waves developed by the interaction of impeller and diffuser
vanes or impeller vanes and volutes. For an impeller with n_

vanes and a diffuser with n_ vanes, Bolleter shows that a ro-

tating pressure wave is developed around the impeller exit with
n = In, - nzl diametral nodes. If n, > n= the pressure wave

rotates in the direction of the pump with the frequency n_/

Journal of Fluids Engineering MARCH 1992, Vol. 114 1 65



Table 2 f ° (peak-excitation-amplitude frequency) versus n

for uoo(0) = 0.5
n l 2 3 4 5 6 7

C, = 0.36mm 0.3 0.8 1.4 2.1 2.9 3.6 4.2

C, = 0.72mm 03 0.9 1.6 2.4 3.1 3.8 4.4

Fig. 7
• , 0.5

4.0] n

NONDIMENSIONAL EXCITATION FREQUENCY

1_1(0.9b')1 versus ffor n -- O, 1, 3, 5, 7; C, ,, 0.36ram, and u_0)

Fig. 8

,- 0.5

2.5
n

--- 12.0 jh _ eeeee 3

0.5

0.0 ................... , ................................ _.....
-4.0-2.0 0.0 2•0 4.0 6.0 8.0 10.0

NONOIMENSIONAL EXCITATION FREQUENCY

I_,(0.95)Iversusfforn = 0,I,3,5,7;C, = 0.72mm, and u_0)

n. If n_ < n 2 the precessional frequency is - nj_/n. Note that
n, the number of diametral nodes, cited by Bolleter is the same

n used in Eq. (13) for the pressure excitation. Further, in terms
of Eq. (13), fi = ±nl_/tn= - n21. Tyler and Sofrin (1962)
earlier developed this same result in analyzing the noise gen-

Table 3 Dominant normalized precession frequency f * and peak-ex-
citation-amplitude frequency f ° versus n, and n=; U,e(0)= 0.5

Fig. 9
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erated by the interaction of a rotor and starer in axial com-
pressors of gas turbines. Moreover, for significant amplification within the leakage an-

Bolleter et al.'s pump (1987) used 12 diffuser blades, and
the impeller of Fig. 3 has 7 blades. Hence, from Bolleter (1988),
n = 17 - 121 = 5, andfi = -7_/5 = -1.4oL If the impeller
were mounted in a double volute, n = 17 - 21 = 5, and

= 7_/5 = 1•4_. From Fig. 5 (n = 5, u_(0) = 0.5), ampli-
fication for f = -1.4 and 1.4 is 0.23 and 0.5, respectively.
Hence, pressure disturbances from the impeller would generate
pressure oscillations about twice as large in a double volute as
in a 12-vaned diffuser• However, in either case, because the

predominant frequency is well removed from the peak-am-
plitude-excitation frequency f" = 2.9, impeller pressure dis-
turbances would actually be attenuated by the annulus.

From Boileter's equations, and the results of Figs. 5 through
7, significant amplification of impeller-discharge-pressure var-
iations will only arise when the number of impeller blades

exceeds the number of diffuser (or volute) blades, yielding a
positive normalized precession frequency.

.f+ =nl/n=n_/(n_-n2) (27)

nulus, f + must lie near f', the peak-amplitude excitation fre-
quency. Table 3 shows the variation off + and f* for various

combinations of nt and n2. The case of n_ = 8 (eight-bladed

impeUer) and n2 = 4 (four-bladed diffuser) yields a close prox-
imity of f" = 2.1, 2.4 to f* = 2.0; however, this is an

unrealistic combination. For a practical configuration, the

nondimensionalfrequenciesf + = 1.67andf* = 1.6 are closest

for n_ = 5(five-bladed impeller) and n2 = 2(double-discharge
volute). Figure 9 illustrates 1_(.95)1 for U_o(0) = 0.5 and n

= 3, confirming the predictions of Table 3. An amplification

by a factor of 2.6 is predicted for new clearances and 3.2 for
worn clearances.

Numerical Uncertainty. The numerical uncertainty issue

for the results presented concerns the numerical integration of

Eq. (17). The results presented were obtained with a fourth-
order Runge-Kutta integrator package using 200 integration
steps for the interval [0, 1]. Repeating these calculations with

400 integration steps yielded the same results to about three

significant figures.
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Summary and Conclusions

An analysis has been developed and results presented for
the pressure oscillations in the leakage annulus between a
shrouded pump impeller and its housing. These pressure os-
cillations are driven by a circumferential variation of the im-

peller discharge pressure which can precess either in the same
or opposite to the direction of rotation. The circumferential
variation can be modeled with a Fourier decomposition with

each mode having n diametral nodes across the impeller. The

peak-pressure oscillations within the impeller are predicted to
occur near the exit wearing-ring seal in association with a
centrifugal-acceleration-mode response of the fluid within the

annulus (Chiids, 1988, 1990b). The peak-amplitude-excitation
frequency increases linearly with n. Using Bolleter's (1988)
work which provides a dependency of n and the precessional
frequency on the number of impeller (hi) and diffuser (n2)
blades, situations are presented which can yield large ampli-
fications (or significant attenuation) of impeller discharge var-
iations. The occurrence and nature of the pressure oscillations
are shown to depend on: (a) the tangential-velocity ratio of
the fluid entering the seal, (b) the order of the Fourier coef-
ficient, (c) the closeness of the precessional frequency of the

rotating pressure field to the first natural frequency of the fluid
annulus, and (d) the clearance of the wearing-ring seal.

The present results suggest an explanation for the internal
melting observed on SSME HPFTP seal parts. However, given

liquid hydrogen's significant compressibility, a more complete

analysis, including fluid compressibility, is in order.
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J

A modified approach to Childs' previous work (1989,1992) on fluid-structure

interaction forces in the leakage path between an impeller shroud and its housing is

presented in this paper. Three governing equations consisting of continuity, path-

momentum, and circumferential-momentum equations were developed to describe the

leakage path inside a pump impeller. Radial displacement perturbations were used to

solve for radial and circumferential force coefficients. In addition, impeller-discharge

pressure disturbances were used to obtain pressure oscillation responses due to

preeessing impeller pressure wave pattern. Childs' model was modified from an

incompressible model to a compressible barotropie-fluid model (the density of the

working fluid is a function of the pressure and a constant temperature only). Results

obtained from this model yielded interaction forces for radial and circumferential force

coefficients. Radial and circumferential forces define reaction forces within the

impeller leakage path.

An acoustic model for the same leakage path was also developed. The

convective, Coriolis, and centrifugal acceleration terms are removed from the

compressible model to obtain the acoustics model. The compressible model is

compared with the incompressible model and the acoustic model. A solution due to

impeller discharge pressure disturbances model was also developed for the

compressible and acoustic models. The results from these modifications are used to

determine what effects additional perturbation terms in the compressible model have

on the acoustic model.

The results show that the additional fluid mechanics terms in the compressible



, model cause resonances (peaks) in the force coefficient response curves. However,

these peaks only occurred at high values of inlet circumferential velocity ratios,

Uoo(O)> 0.7. The peak pressure oscillation was shown to occur at the wearing ring

seal. Introduction of impeller discharge disturbances with n = 11 diametral nodes

showed that maximum peak pressure oscillations occurred at nondimensional precession

frequencies (f = D_/co where co is the running speed of the pump) of f = 6.4 and f

- 7.8 for this particular pump. Bolleter's results suggest that for peak pressure

oscillations to occur at the wearing ring seal, the nondimensional excitation frequency

should be on the order of f = 2.182 for n -- I I. The resonances found in this

research do not match the excitation frequencies predicted by Bolleter. At the

predicted peak excitation frequencies given by Bolleter, the compressible model shows

an attenuation of the pressure oscillations at the seal exit.

-_The compressibility _of_he fluid :cioes 'not have a significant influence on the

model at low values of nondimensional excitation frequency. At high values of

: nondimensional frequency, the effects of compressibility become more significant. For

the acoustic analysis, the convective, Coriolis, and centrifugal acceleration terms do

affect the results to a limited extent for precession excitation and to a large extent for

a pressure excitation when the fluid operates at relatively high Mach numbers.
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CHAPTER I

INTRODUCTION

In the past, wear-ring seals used on the SSME I-IPFFP (Space Shuttle Main

Engine High Pressure Fuel Turbopump) made from KEL-F plastic came back after

operation revealing highly unusual characteristics. Despite being in constant contact

with liquid hydrogen, post-test inspection showed that interior points in the stator

element had melted and resolidified. The material used in the seal stator has poor heat

conduction properties and high internal hysteretic damping. Pressure oscillations

adjacent to the seal may be a source of cyclic stress producing hysteretic losses. This

investigation will examine the pressure oscillations which may cause cyclic stresses in

the leakage path between the impeller shroud and its housing. Possible sources of

excitation causing the seal to melt and resolidify will be investigated.

For this project, an analysis will be performed for a bulk flow model of the

leakage path between a pump impeller shroud and a housing along the front side of the

impeller, from inlet to discharge (Fig. 1). Simply defined, a bulk flow model

considers only the average of the velocity distribution across the flow field. The

research will be an extension of analyses performed previously by Childs (1989, 1992)

for a shrouded pump impeller and its housing.

The working fluid will be modelled as a barotropic fluid in this analysis, instead

of an incompressible fluid, to account for fluid compressibility. The density and

viscosity of barotropic fluids depend only on the local pressure and are independent of

temperature. This assumption is reasonable for most cryogenic fluids, where viscosity

is low and effects of viscous heating are negligible. The properties of the working

fluid, i.e., density and viscosity, will be implemented into a new analysis by using a

general 32-term, thermodynamic, equations-of-state program, MIPROPS (McCarty,

1986, modified by San Andres, 1991).

This paper is modelled after the ASME Journal of Ttibology.
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CHAPTER II

LITERATURE REVIEW

Childs (1989) performed a bulk-flow analysis for the leakage path between an

impeller shroud and a pump housing. Three governing equations of motion were

derived for a bulk-flow model to represent incompressible fluid flow in the leakage

path of a conventional water pump impeller. Three equations, consisting of a

continuity equation, a path-momentum equation, and a circumferential-momentum

equation, were used to solve for rotordynamic forces due to a precessional excitation

of the rotor.

Childs used a perturbation expansion in the eccentricity ratio of the governing

equations of fluid motion for small motions about a centered impeller position yielding

a set of zeroth and first-order governing equations. A zeroth-order solution was

obtained by an iterative procedure to define the leakage, pressure, and circumferential-

velocity distribution. Using a perturbed clearance function due to a radial displacement

perturbation, Chiids evaluated the first-order model at several inlet circumferential

velocity conditions to obtain the first-order perturbed solutions. First-order

perturbation results provided rotordynamic coefficients (direct and cross-coupled

stiffness, damping, and mass) and lateral reaction forces for the model. Childs'

predictions for the impeller of Fig. 2 are shown in Fig. 3. The predicted radial and

circumferential force coefficients are shown versus the nondimensional precessional

frequency for nondimensionalized inlet circumferential velocities of uoo(0) = 0.5, 0.6,

and 0.7. Nondimensional precessional frequency is the ratio of the impeller precession

frequency, t'/, to its running speed, _. The graphs showed a considerable "dip", or

resonance, in the radial and circumferential force response coefficients at higher values

of Uoo(0). The radial and circumferential force coefficients represent the

nondimensionalized reaction forces acting on the impeller face due to impeller

precession. Childs showed that the centrifugal acceleration terms in the momentum

equations produced the "dip" in the results. By removing the
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centrifugal acceleration term from the path-momentum equation, the "dips" in the plots

were eliminated.

Bolleter (1988) presents a relationship between the difference (n) in the number

of impeller blades (n 1) and diffuser vanes (n,) and the precessional frequency for

pressure pulsations in an impeller leakage path. Various combinations of impeller

blade and diffuser vane number causing vibrations and pressure pulsations in the

impeller are described. The relationship presented by Bolleter states that a pressure

pattern develops with n = I n I - n, [ diametral nodes around the impeller exit. The

precession velocity of the pressure oscillation is no_J([ nl - n_b. For example, an

impeller with n_ = 11 blades and n: = 6 diffuser vanes would have amplifications of

the pressure oscillations at frequencies of multiples of 11c0/([11 - 6 b--2.2_.

Childs (1992) performed an analysis similar to (Childs, 1989) incorporating the

effects of different numbers of impeller blades and diffuser vanes for the bulk flow

model using excitations due to discharge-pressure oscillations instead of orbital motion.

This analysis considered the harmonic response of flow within the annulus due to

variations in the discharge pressure of the impeller. This analysis also compared the

effect on the response of the pressure oscillation due to different numbers of pump

impeller blades and diffuser vanes. Zeroth and first-order perturbation equations were

also derived for this analysis. However, the first order perturbations in this analysis

were excited by discharge-pressure perturbations instead of impeller precession. The

impeller discharge excitation was defined as a precessing harmonic pressure oscillation

with n nodes and a precessional frequency of _.

Results from the analysis due to perturbed flow in the leakage path caused by

oscillations in the impeller discharge pressure show that the peak pressure oscillation

occur near the exit ring seal. The pressure oscillations from the impeller were shown

to depend on the circumferential velocity of the fluid entering the seal, the Fourier

coefficient, n, and the relative closeness to the first resonant frequency of the fluid to

the peak precessional frequency of the rotating pressure field. Note that n represents

both the Fourier coefficient used by Childs and Bolleter's n -- I nz - n_l.
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Acoustic modes are produced by the interaction of fluid inertia and

compressibility. Thompson (1988) explains that the wave equation, the fundamental

equation of acoustics, is obtained by assuming that the convective acceleration terms

are negligible compared with the temporal acceleration terms. For ordinary acoustic

analysis, Thompson states that this assumption is "highly satisfactory" for fluid flow

characterized by a low Mach number, typically M 2 ,, 0.1. By removing the convective,

Coriolis, and centrifugal acceleration terms from a modified general perturbation

(compressible) version of Childs' model, a similar wave equation can be obtained.

This resulting equation, in theory, can be used for an "acoustic" analysis of the flow

fields. °_

San Andres (1991) developed a solution procedure for a model of fluid flow in

turbulent hydrostatic bearings and annular seals operating with cryogenic barotropic

fluids. He used a 32-term equations-of-state program provided by N'BS Standard

Reference Data Base for prediction of the properties of LI-I 2, LO2, LN2, and other
_ ' : -i_ i 2 _-::: -:_ " :

fluids at different pressures and temperatures. The code, MIPROPS, delivers fluid

properties which are used in the analysis procedure, in addition to obtaining the fluid

properties from MIPROPS for use in a compressible model, San Andres also

considered the properties of the working fluid as a linear function of pressure. From

his results, San Andres found that for highly compressible fluids, such as liquid

hydrogen, the barotropic properties model based on an equation of state gave accurate

leakage and force response for bearings and seals with a large pressure differential.
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CHAPTER III

OBJECTIVES

This research will introduce compressibility of the working fluid in the leakage

path as an extension to the analyses performed by Childs (1989, 1992). The results

will provide information concerning the relationship between an incompressible, a

compressible, and an acoustic model with liquid hydrogen as the working fluid. The

results will also provide information regarding the cause of the unusual behavior

exhibited by the KEL-F plastic rotor element and verify the validity of Thompson's

assessment concerning the effects of fluid mechanics and acoustics. This research

project will also analyze the effects of the centrifugal acceleration modes and acoustic

modes of a barotropic fluid in the leakage path between a shrouded pump impeller and

its housing.

The results obtained from a compressible-flow model will be compared with

the results of an incompressible model. The compressible-flow model will also be

reduced to an acoustics model, the results of which will be compared to the

compressible-flow model. This comparison will be performed for two different

perturbation excitations: (a) a precessional excitation involving an orbital motion of

the rotor, and (b) a pressure oscillation excitation, involving perturbation of the

discharge or inlet pressure of the leakage path. The geometric and operating

characteristics of the first stage impeller of the SSME HPFTP will provide the

parameters used for the governing equations.

A bulk-flow model will be developed and used to simulate the leakage path

inside the first impeller stage of the Space Shuttle Main Engine Turbopump. Results

from the computation should indicate if any interaction exists between acoustic and

centrifugal acceleration modes, and the influence of fluid mechanics terms (convective,

Coriolis, or centrifugal acceleration terms) on acoustic modes.
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CHAPTER IV

GEOMETRIC AND OPERATING CHARACTERISTICS

Figure 4 shows the first-stage impeller of the Space Shuttle Main Engine

Turbopump. The impeller measures 0.3048 m in diameter at the exit (leakage path

inlet) and 0.1905 m in diameter at the seal inlet (leakage path exit). The impeller is

also characterized by 24 impeller blades and 13 diffuser vanes. At full power levels,

this stage operates at 34,000 rpm, with an inlet pressure at the entrance to the leakage

path of 13.79 MPa and a discharge pressure of 1.72 MPa at the exit of the wearing

ring seal. Operating at a pump speed of 34,000 rpm, the resultant velocity vector of

the liquid hydrogen inside the leakage path is calculated to be about 0.4 times the

acoustic velocity of liquid hydrogen.

The wearing ring seal contains four steps, measuring 0.1915, 0.185, 0.1786,

and 0.172 m in diameter, which accommodate four teeth at the end of the impeller

blade. The radial clearances between the seal and the rotor teeth are estimated to be

0.229 mm (0.009 in), accounting for radial expansion of the rotor during operation.
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DIMENSIONS IN
MILLIMETERS

Wear ring s_:l h

Leakage

P exit = 1.72 MPo

Impeller blade

,! 3.3--._ _ T

Figure 4 - SSME HPFTP first impeller stage
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CHAPTER V

BULK FLOW MATHEMATICAL MODEL

Childs' governing equations will be modified for this project to reflect a bulk

flow model operating with'a barotropic fluid. As in Childs' analysis, these equations

will be nondimensionalized and perturbed to yield zeroth and first-order governing

equations.

5.1 General Governing Equations

Using the approach taken by Childs (1989), the governing equations are:

• Continuity Equation

OpH O, U + 1 O, U" H aR (1)

• Path-Momentum Equation

_HaP = . Ug dR+_, ÷%+p + (2)

• Circumferential-Momentum Equation

Jave auou_ auo uou,aR_
HaP _ _o_ +mRao +_°'+P"[--&-÷ooR osv,÷ R -_)

(3)

An additional governing equation is obtained by using MIPROPS to obtain the

properties of liquid hydrogen.
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• Equations of State

P: (4)

With the exception of the addition of p to the continuity equation, Eqs. (1-3)

are identical to Childs' (1989). The path and circumferential-momentum equations do

not change from Childs' model because the density (p) drops out of the momentum

equations when the continuity equation is used to simplify them.

The equations of state in Eq. (4) define the density and viscosity for the bulk-

flow model. The variation in density of the fluid in the model will be implemented by

assuming that the working fluid is barotropic. Here, the variation in density of the

working fluid will be modelled as a function of pressure and a constant temperature

only. In this investigation, the MIPROPS code calculates the value of density and

viscosity at a constant temperature of 23.37 K with varying input pressures, and

returns values of density and viscosity to the main program. The variation of viscosity

with respect to pressure were very slight; therefore, viscosity was kept constant.

H(S, 0, t) in the governing equations defines the clearance between the impeller

and the housing. Nondimensionalization of this variable is given in the nomenclature

and also later in this text.

Hir's (1973) definitions were used to define the shear stress components of the

rotor and stator surfaces. The equations shown below define the shear stress acting

on the impeller and its housing. The first subscript in the equations denotes the

direction of fluid flow (path and circumferential), and the second subscript refers to the

surface (stator and rotor), respectively.

m.f*l

,: (5)
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mr÷l

(6)

ma÷ l

ns

_o= = "_PUoU_I +(U_Ua)2] 2
(7)

mr÷l

_ nr -R_)RT{1 -Ro)/U,_}2ou/u. +[(uo
(8)

Reynolds' number used in these equations is represented by,

R a = 2HUs/v (9)

Boundary Conditions

The pressure drop of the inlet to the leakage path provides the inlet boundary

condition (s=0) given by the relationship,

P, - Po(O,O,t)= p(1 +_)U_O,O,t)/2 <10)

The exit wearing-ring seal defines the following exit boundary condition,

P(L,,O,t)-Pe=2CeeU_(Ls,O,t) (11)

These boundary conditions apply directly for precession excitations.

For the analysis which examines the changes in (u,, ue, p) due to changes in

the impeller's discharge P, or inlet pressure P,, the following boundary conditions are
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stated for the inlet and exit, respectively,

e,(o,t)- Po(O,O,t)=p(l÷_)u_o,o,t)/2 (12)

P(L,,e,,)-P,<O,,I (13)

Eqs. (12-13) differ from Eqs. (10-11) because P, and P, are now also functions of

time.

5.2 General Perturbed Equations - Nondimensionalization and Perturbation

Analysis

Introducing the following variables into Eqs. (1-8),

u,=u,/v,, uo=ujR,,,,, p=P/pV?,

h = HIC i, s =SIL s, r = RIR_

"_= _t, b = V/Ricz, T= LJV l

= P/Pi

(14)

yields nondimensional governing equations.

The perturbation variables used to obtain zeroth and first-order equations are

defined by,

us=uso +¢usl ' h=ho +eht' ISfPo+¢Pt (15)

uo = Uoo + eUot, P =-DO+ cPl

where ¢ is the perturbation coefficient to be defined separately below for precession

and discharge-pressure excitation.

5.2.1 Zeroth Order Solution

The zeroth-order equations are the same for the precession and exit-pressure

excitations.
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5.2. I. 1 Zeroth-Order Equations

The path and circumferential velocity distribution and the leakage rate for a

centered impeller position are defined by the following zeroth-order governing

equations.

• Continuity Equation

rhousoOo = 1 (16)

• Path-Momentum Equation

1 dPo du,o

Oo ds d_

1 dr(Uoo) 2 (os+Or)u_ °
-T_T) ÷ 2

• Orcumferentiai-Momeniuin Equation "

2a,_o+2"_ +[o,{,.-,)+o:,.]--o
ds rds

{17)

(18)

where

• Equation of State

o, =(L,/'o)X,,o,. (L,mo)X,
_÷1

_,_,_R.71+(u_/bu,o}_]-r
mu'*I

Eq. (19) represents friction factor definitions for the stator and

respectively, introduced in Eqs. (5-8).

(19)

(20}

rotor surfaces,
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5.2.1.2 Zcroth-Ordcr Solution

The zeroth-order continuity Eq. (16) can also be expressed as,

du_o_ [ l dho I dPo 1dr]
- -Uso _ +_ +--_

(21)

This equation can be substituted into Eq. (17) to obtain

u r,   ol rll
-=-

+ (o,+ o) u_ (22)
2

The governing zeroth-order equations now reduce to two governing equations,

consisting of Eq. (18) and Eq. (22). Eq. (20) defines p solely as a function ofp and

provides the density used in Eq. (18) and Eq. (22).

Boundary. Conditions

The inlet boundary condition for the zeroth-order pressure relationship can be

expressed from Eq. (10) as,

= P" -(1+_)y_o)
po(O)p,v?

(23)

The zeroth-order solutions are obtained by solving Equations (18) and (22)

iteratively. An initial (s=0) fluid velocity V_ is estimated which then defines u,o(s).

A specified Uoo(O)and the calculated Po from Eq. (23) are used to numerically integrate

the zeroth-order equations (18) and (22) from the path entrance (s=0), to the path exit

(s= 1). The procedure is continued with revised values of V_ until convergence is

obtained between the prescribed and the calculated exit pressure.

5.2.1.3 Zeroth-Order Results

The zeroth-order results provide the mass flow rate through the leakage path.
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The dischargecoefficient Cde used in this analysis was obtained by using the leakage

rate through the wearing ring seal. The leakage through the wearing ring seal of the

SSME HPFTP was calculated using a seal leakage code developed by Morrison et al.

(1983), and this value was used to calculate the discharge coefficient at specific

impeller operating conditions. The seal leakage code uses the geometry of the seal

and the operating conditions, i.e., inlet and exit pressures, viscosity, density, etc. to

calculate the leakage rate through the seal. Note that this seal leakage code treats the

working fluid as incompressible.

The seal leakage code yielded several mass flow rates for the prescribed

geometry and operating conditions, depending upon the pressure drop across the

impeller and the wearing ring seal. Several discharge coefficients were tested in the

model to match the flow rate through the impeller leakage path and the flow rate

through the seal. Once the two flow rates converged, the resulting C,_ was used in

the model as an exit restriction boundary condition. The mass flow rate through the

seal was found to be 1.6373 kg/s, with the resulting C,u being 7039.6, and inlet and

exit pressure of the seal being 8.101 MPa and 1.72 MPa, respectively. This pressure

drop across the seal represents about one third of the total pressure drop across the

entire impeller leakage path.

Zeroth-order pressure solutions for the incompressible and compressible models

are shown in Figure 5. The nondimensional path velocity along the leakage path is

given in Figure 6, and the zeroth-order circumferential path velocity is shown in

Figure 7. For the incompressible model, a mean value for the density of liquid

hydrogen inside the impeller leakage path was used to obtain the results shown.

The results of the compressible model vary only slightly from the

incompressible model for the zeroth-order solution. The pressure distribution across

the leakage path shows the same trend and approximately the same magnitude of

pressure drop, but not exactly the same inlet and exit pressure values. The C_, found

earlier provides the exit restriction for the seal and therefore is used for both models.

Because the incompressible model uses an average density along the leakage path, the

inlet and exit densities for the two models will be slightly different. This accounts for
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Figure 5 - Zeroth-order pressure p distribution along leakage path for compressible

and incompressible models for u_o(0) = 0.7
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the difference in the dimensionlesspressuremagnitudesshown in Figure 5. The

dimensionalpressuresat the inlet are almostexactly the samevalue, confirming the

inlet boundarycondition. As shownin Figure 6 andFigure 7, the zeroth-orderpath

velocity andthezeroth-ordercircumferentialvelocity arenot affectedsignificantly by

compressibility.

5.2.2 First-Order Equations

First-order governing equations define the path and circumferential velocity and

pressure distribution along the leakage path due to perturbed clearance function or

perturbed discharge-pressure.

First-order perturbation equations obtained by the perturbation expansion of Eq.

(14) are

• Continuiry Equation

+-;L _-- +ho_o-_- uoopo-_-j

ldr(u-,
Toords_"°P°nl+uaf_°h°+u'°p_h°)=0

(24)

• Path-Momemum Equation

a_o as +uoIAz'+usIA3s+ _tA_ + Too
u°°OUa + uso(gual = htAu (25)

+ Too rO0 osJ

• Circumferential-Momentum Equation

r R_ I_o_ + UelA2e + ustA_ + _3IA4e + Too +Too u00 auol -_]r aO + u_° =hrAle

(2O3
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• Equation of State

a_ 1 d_ 1 8Pl a_ l d_ l apt a_ 1 _ d_ l apt

_7 dp as a_ _p a_ ao d_-_
(27)

With the exceptions of A4, and A40, which are defined in the appendix, the parameters

At, , A2, , etc., in these equations can be found in Childs (1989).

The dependency of _ with respect to s, _', and 8 in Eq. (24-26) are eliminated

from the governing equations by applying the definitions of Eq. (27). The relationship

between _ and p in Eq. (27) was obtained from the results produced by MIPROPS.
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CHAPTER VI

FIRST ORDER EQUATIONS AND SOLUTIONS FOR GENERAL

PERTURBED COMPRESSIBLE MODELS

This chapter provides the first order equations and solutions for precession

excitation and pressure excitation cases for the general perturbation (compressible)

models. Results for both excitation cases are presented using an inlet tangential

velocity of Uoo(O) = 0.7. The radial and circumferential-force coefficient response

curves represent the nondimensional reaction force acting on the impeller face in the

respective directions versus nondimensional frequency ratio, f.

For the first-order solution analysis, a separation of variable approach was used

to obtain complex ordinary differential equations. The resulting coupled equations

were integrated to obtain the nondimensional radial and circumferential force response

coefficients. The calculated results from the first-order precession excitation and the

pressure excitation of the general perturbed bulk flow model provide predictions which

can be used to qualify and quantify the effects of fluid compressibility in the model.

6.1 Precession Excitation: General-Perturbation Model

The precession excitation of the general perturbed model uses the perturbed

clearance function,

--htc(s,,)eos0 +hL,(s,,)sin0 (28)

as the excitation.

The theta dependency of Eqs. (24-26) can be eliminated by substituting the

following solution format

usz = uaccosO + ususinO

Pt =Plc era0 +p_in0

uei = uolccos0 ÷ uo_in0

t = t,c°sO* P . inO

into Eqs. (24-26), which yields six real equations.

(29)
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Three complex equations in the independent variables s and x can be obtained

by introducing the complex variables

u l =us1c +ju, l`, ttel =uolc +juots, _ = 01c +JOt_ (30)

12x--Pie +JPu, hx =hl_ +jhts

These complex equations in the independent variables s and x are

I.°0o o,1, J_,, j,_T [1 aho + I aOo l.._U0ol_- --r-_'÷_"[_o_ _o_ ÷;-_ _: _
+_ "_Tu ] _TC3hl UsoOhl
_r dOt 012x+Usoa_= h, us°ah° + J_or oo]- ho 8x - ho as
Po d121fir, Po _ ho2 as

(31)

1 a121

0o

(32)

_._. u0° igl/et] _--(33)
r R i 0o

Since the equation of state is a function of pressure and a constant temperature only,

it can be modified as shown in Eq. (27) and used to remove the dependency of _ from

s in Eq. (31). Further simplification of Eqs.(33-35) can be made by using the

following definitions provided by Childs (1989)

(34)

(35)
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where

q =x+jy (36)

Eq. (36) represents the physical motion of the rotor in the x and y directions, shown

in Figure 1.

Assuming a harmonic seal motion of the form

q =qo ei_, f= t'2l_

the corresponding harmonic solutions can be stated,

(37)

a =u,:_, u_ =uete_, ._ =_:_' (3s)

which yields the following three complex ordinary differential equations of motion,

ua] gt

+pt ueiI= g2
_,,j s,

(39)

where

[a]=

juT
All -_ -Al2

r

a __ a2__2+;T___r
UsO UaO UaO

A3t A32

_dPof u_odPo .J_.Tuoo).joTd!o

A d_o. bL,

A4a A33 dPo

Po Po _

+Ar_

(40)
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'tg2

g

dp0 +Jh0

dz.Al0

dsu, o

Gq

(41)

Elements used in Eqs. (40-41) can be found in Appendix A.

6.1.1 Boundary. Conditions

Nondimensional first-order boundary conditions for the precession excitation can

be stated from equations (10) and (11) as

_1(0)
= m(1+_)Us'(O) (42)

_,(1)
= C,_uAI_sI(1) (43)

Additionally, the perturbation entrance circumferential velocity can be stated as zero,

_.t(0)=0 (44)

The solution to this set of equations is obtained by applying the procedure

presented by Childs (1989). The solution procedure used to determine the reaction

forces and moments are also given by Childs (1989).

6.1.2 First-Order Results

Radial and circumferential force response coefficients for general compressible

and incompressible precession excitation models operating with an inlet circumferential

velocity of uoo(0) = 0.7 are shown in Figure 8 and Figure 9. The results
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show that the effects of compressibility do not affect the results of the model to a

great extent over the frequency range considered. As with Childs' results, local

resonance peaks occur in the response curves. Two local peaks occur in the response

curves, at nondimensional frequency ratios off = 0.1 and f = 0.8. For low inlet

values of circumferential velocity u_0) = 0.5, the behavior of the response curves

of the compressible model is virtually the same as the results shown for an

incompressible model shown by Childs (1989), i.e., the resonance in the response

curves diminish at lower values of inlet circumferential velocity.

Complex first-order pressure, path velocity, and circumferential velocity for

different nondimensional excitation frequencies along the leakage path produced from

the first-order perturbation analysis provide approximate complex modes at the

resonant frequencies. The real and imaginary parts of these results are used to obtain

amplitude and phase plots at the resonant frequencies. Amplitude and phase plots of

first-order nondimensional pressure in the leakage path at the frequency ratios off --

0.1 and f = 0.8, where the local peaks occur, are shown in Figures 10 and 11.

Complex modes for ua at the same frequency ratios are shown in Figures 12 and 13.

At the frequency ratio of f = 0.1, the amplitude of the pressure along the

leakage path steadily increases and has a maximum value at the exit of the leakage

path. For the frequency ratio off = 0.8, the maximum pressure amplitude occurs

near the middle of the leakage path. The mode shape for ua at f -- 0.1 shows a

slightly decreasing amplitude along the leakage path, with a minor increase in the

amplitude at the exit. As with the mode shape for the pressure distribution at f ---

0.8, the maximum magnitude occurs near the middle of the seal.

As with Childs' model, the resonant peaks found in this analysis can be

attributed to the centrifugal acceleration terms. When the centrifugal acceleration

terms are removed from the model, the local peaks in the response curves diminish

significantly. The mode shapes at f --- 0.8 do not support the theory that maximum

pressure oscillations at the leakage path exit are causing the seal to melt because the

maximum amplification occurs near the middle of the leakage path.
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Noticeableeffectsof compressibility upon the model can be seenat higher

nondimensionalfrequency ratios. Figure 14 shows the responsecurves of the

compressibleand incompressiblemodels for high frequency ratios. The force

responsesof the incompressiblemodelcontinueto grow with increasingf, while the

results of the compressible model exhibit peaks corresponding to the natural

frequency. This is consistent with classical vibration analysis, with the incompressible

model having no natural frequency due to an infinitely high bulk modulus, while the

compressible model has a natural frequency corresponding to the compressibility of

liquid hydrogen in the model.

6.2 Pressure Excitation

This part of the research involves introducing a time and circumferentially

varying impeller discharge pressure to the compressible model. With different

excitations involved in this model, new boundary conditions also exist. The pressure

perturbation takes the form of the following equation.

• Supply Pressure-Excitation Perturbation

e,(0,t)= (45)

The occurrence of epsilon in this equation represents the perturbation coefficient for

discharge-pressure excitation.

6.2.1 First-Order Equations

Nondimensionalization and perturbation of the general governing equations (6-

8) yields the same governing equations for pressure excitation perturbation as for

precession excitation governing Eqs. (31-33), except with ht = 0 for this model.

Therefore, the first-order governing equations for pressure excitation will not be

presented in this section.
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6.2.2 Boundary_ Conditions

Nondimensionalization and perturbation of the boundary conditions introduced

in Eq. (12-13), the first-order boundary condition can be stated as

ps_(O,t)-pl(0,0,t) =(1+ _)u,,(0,0,tll +(1+_)dO 10]
2 dp (46)

p_(1,e,t)-p,,(o,t) =Cdeuso(1)us_(1,O,t(l + (1+2_) dOdpI,)

p,l(O,O, p,1(O,O provide the boundary excitations and take the form,

p,_lo.t)=d°%:osno +p,_:innO)
p,j(o.o =eJ_'_,_ccosnO+p,_r_nnO)

(47)

6.2.3 First Order Solution

The them and time dependency of the first-order pressure excitation governing

equations is eliminated by assuming

u,_=e_ (u,_cosnO+u,_:innO)

uol=ed#(UOlcCOsnO+ltsl:irtnO)

Pl =ca' (P_c°s nO+pusin nO)

(48)

where n represents the difference of number of impeller blades and vanes, also defined

as the number of diametral nodes (Bolleter). Substitution of Eqs. (48) into the first-

order pressure excitation governing equations, equating coefficients of cos nO and sin

nO, and using complex variables described in Eq. (30) reduces the real equations to

three, complex ordinary differential equations

I P,J I P,J

=0 (49)
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where

Bll

Ax, A2o +JTT A dP° bL,

A4s B33 dPo
B3_ B32 .....

P0 00 ds

(50)

Eq. (49) differs from Eq. (40) in that Eq. (49) is now a function of n with h t - O.

These equations are solved using the method presented by Childs (1992).

6.2.4 First-Order Results

Results from the pressure excitation perturbation analysis using a difference of

impeller blades and vanes (n) is presented in this section. Since the SSME HPFTP

wearing-ring seal is located at the end of the leakage path (s = 1), the results from

this section will concentrate on this area of the leakage path. The pressure-oscillation

response at the end of the leakage path versus nondimensional excitation frequency

corresponding for n = 11 is illustrated in Figure 15. The value of n = 11 is used

because, as mentioned previously, the SSME HPFTP has 24 impeller blades and 13

diffuser vanes, for a difference of 11. Bolleter (1988) explains that the dominant

pressure pattern to be expected for this arrangement would have 11 diametral nodes.

This is important because it is the value used as n in Eq. (48). Figure 15 shows that

the peak pressure oscillation at the exit of the impeller leakage path (s = 1) occurs at

a nondimensional frequency of about f = 6.4 and f 7.8. Bolleter predicts that the

peak pressure oscillation should occur as a function of the difference in the number

of impeller blades and vanes, presented in Tables 1 and 2.
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The resonant frequency ratios at f = 6.5 and f = 7.8 clearly are not functions

near the predicted excitation frequencies provided in Table 2 for n = 11. None of the

other cases tested yielded results which correspond to the values shown in Table 2 for

the respective value of n. These results reveal that amplification of peak pressure

oscillation does not occur at the expected frequency ratio. At the predicted frequency

ratios, the cases tested for this model showed that an attenuation, rather than an

amplification of the pressure waves occurred.

Table 1 - (nz - n,_) for various combinations of multiples of impeller blades and vanes

13

26

39

n I 24 48 96

11 35 83

-2 22 70

-15 9 57

Table 2 - Expected peak nondimensional frequency ratios, f or, {n/(n t -

various combinations of multiples of impeller blades and vanes

nl 24 48 96n,

\
13

26

39

2.18 1.37 1.16

-12.00 2.18 1.37

-1.60 5.33 1.68

ng}, for

Amplitude and phase plots (Figures 16 and 17) of the pressure oscillation for

the two resonant frequency ratios found for n for the compressible pressure excitation

model show that the peak pressure oscillation occurs at the exit of the leakage path.

This result helps to support the hypothesis that pressure oscillations at the leakage path
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exit are causing the seal to melt. However, the result does not provide enough

evidence to provide a very plausible explanation for the behavior exhibited by the

wearing ring seal.

The response of the compressible model for other values of n is plotted in

Figure 18. The graph shows the relationship of the peak pressure oscillation response

to the number of diametral nodes. The nondimensional excitation frequency ratio at

which the peak pressure oscillation occurs increases as the number of diametral nodes

increase, consistent with Childs' analysis (1992). However, unlike Childs' results,

where the magnitude of the peak amplitude stays relatively constant, regardless of n,

the results produced from the compressible model show that the amplitude of the

pressure oscillations increases as n increases. The effects of added compressibility to

the results of this model is greatly enhanced compared to results of the precession

excitation model. But, as with the precession excitation analysis, the influence due to

compressibility effects is only noticeable at higher nondimensional frequencies.
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CHAPTER VH

FIRST ORDER EQUATIONS AND SOLUTIONS FOR ACOUSTIC MODELS

For acoustics analysis, the temporal acceleration terms are the only acceleration

terms which remain from the set of general governing equations. A highly reasonable

assumption may be made that the contributions from the convective, Coriolis, and

centrifugal acceleration terms are negligible compared to the temporal acceleration

terms in the realm of ordinary acoustics (M _ ,, 1) (Thompson, 1988). However, due

to the high Mach number with which the working fluid in the SSME HPFTP operates

(M _-- 0.4), the general perturbation fluid model and the acoustic model must be

compared to investigate the effects of the convective, Coriolis, and centrifugal

acceleration terms in an acoustic analysis.

The zeroth-order solution for the acoustics models do not change from the

previous results obtained because the zeroth-order equations and solution remain the

same.

7.1 Precession Excitation Model

7.1.1 First Order E_.uations

First-order governing equations for the acoustic precession excitation model can

be obtained by removing the effects of fluid mechanics, i.e., the convective, the

Coriolis, and the centrifugal acceleration terms from the general perturbation governing

equations given in 5.2.2, Eqs. (24-26). Removing the convective acceleration terms,

uoduo/ds uAu,/ds, the Coriolis acceleration term, 2uAlr/rds, and -2uoodr/(b:rds),

representing centrifugal acceleration, from the continuity Eq. (24) yields the first-order

governing acoustic continuity governing Eq. (51). The first-order governing acoustic

equations for the path and circumferential momentum are obtained by removing the

convective acceleration terms from F.qs. (25-26).
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• Continuity Equation

0oo_ +h hio a_ as
=0 (51)

• Path-Momentum Equation

1 op,

Po asm__ +ueIAzf+us_A:_+ OzA4_+ T_---._--=htA _

• Circumferential-Momentum Equation

+ uorA2e + uff430 + (JIA4o +T_o_ =htale

(52)

(53)

7.1.2 First-Order Precession Excitation Solution

The theta dependency of Eqs. (51-53) can be eliminated by substituting the

solution format presented in Eq. (29). The three resulting complex equations in the

independent variables s and r after introducing the complex variables of Eq. (32) are

• Continuity Equation

i_sl jeT [1 0h0+ 1 0P0] [UsoOho ._Too 1
(54)

• Path-Momentum Equation

/

_oC_
(55)
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• Circumferential-Momentum Equation

b L, Oq + + __tA4e + Tcz_ -
r R i Po +ttelA2° us:3e

0_1 - h_o (56)

Assuming the harmonic seal motion described in section 6.1, Eq. (38), the three

governing equations reduce to two differential equations of motion of the form,

(57)

where

us°dP°G +F +.rTdz ._T Ale

(58)

The [C] matrix elements are given in Appendix C.

The dues/ds term has dropped from the governing equations and thus uei can

be solved directly without integrating the partial differential equations, yielding,

u0,.l,:,0
(59)

Results to these equations are obtained using the same solution procedure and

boundary conditions described for the first-order precession excitation equations in

section 6.2.2. The solution to these sets of equations can then be used to calculate the

force and moment coefficients in the impeller leakage path for the acoustic ease where

classical acoustic assumptions are made.
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7.1.3 First-Order Results

The nondimensional radial force coefficient responses for the general

perturbation and acoustic cases are shown in Figure 19. The response curves for the

circumferential force coefficients are shown in Figure 20. The response curves for

the acoustic case are less erratic in behavior, and the peaks exhibited by the

compressible model totally disappear. This shows that the convective, Coriolis, and

centrifugal acceleration terms do affect the results of the compressible model to a

considerable extent at low frequencies. Childs (1989) correctly predicted that the

centrifugal acceleration terms caused the resonance in the response curve. Although

the results of the two models do not differ quantitatively, the trend exhibited by both

models are similar, as evidenced by Figures 20 and 21.

At higher values of nondimensional frequency, the effects of removing the fluid

mechanics terms from the model is shown in Figure (21). The two models show

about the same results. The natural frequency of the acoustic model is slightly lower

and the peaks are slightly higher. Mode shapes for pressure oscillations at f = 11.5

and f = 12 are shown in Figures 22 and 23. The mode shapes show that, at these

frequencies, the pressure oscillations are not the cause of the uncharacteristic behavior

of the exit wearing ring seal due to a precession excitation. The mode shapes do not

show conclusively that the pressure oscillations are occurring at the exit of the seal.

7.2 Pressure Excitation Model

7.2.1 First-Order Equations

The equations obtained for the first-order acoustic pressure excitation

perturbation use the same procedure as for the first-order acoustic precession

excitation shown in section 7.1.1. The boundary conditions and perturbation

excitation are defined by the equations used for the general first-order pressure

excitation solution given in section 6.2. The resulting governing equations for

pressure excitation of the acoustic model are the same as those given in section 7.1. I,

except with h t being zero, analogous with the results obtained for the pressure

excitation equations for the general perturbation model.
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7.2.2 First-Order Pressure Excitation Solution

Using F-xl. (48) to eliminate the theta and time dependency from the first-order

pressure excitation of the acoustic model and using the pressure excitation perturbation

described in Eq. (45), the resulting governing equations can be represented as,

=0
(60)

Where elements of [D] are provided in Appendix D.

In addition to hi being zero, Eq. (60) also is a function of n, unlike Eq. (57).

7.2.3 First-Order Results

Comparison of the general perturbation model and the acoustic model for n = 11

shows that the peak pressure amplification around f = 7.8 displayed by the general

perturbation model almost totally disappears for the acoustics model. From Figure 24,

the results for the acoustics model show that no amplification of the pressure

oscillation occurs, but rather, an attenuation of the pressure oscillation at all frequency

ratios. It can be concluded from this result that the convective, Coriolis, and

centrifugal acceleration terms contribute significantly to the results of a bulk flow

model when a pressure excitation is used as the perturbation parameter of the bulk

flow model. The results here also differ with respect to the location of the resonant

peaks in the nondimensional frequency range tested. For the acoustic model, the local

peaks do not match with those of the compressible model.

The sharp peak of the pressure amplitude near a frequency ratio of f = 0.0 is

inherent in all the models (compressible, incompressible, and acoustic), shown in

Figure 25. The phenomenon causing this resonant excitation is not yet understood and

cannot be explained. However, the fact that this resonance occurs in all three models

explains that neither the compressibility or the acoustics effects of the models affects

this resonant frequency. Also, the fact that the frequency at which resonance occurs

is near f = 0.0, indicates that this peak could be the response to a free vibration of
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the fluid inside the leakage path.

Figure 26 shows the first-order pressure response for multiple cases of n. The

frequency responses due to different n show no quantitative trend with respect to n.

Unlike the compressible model, where the pressure response showed a definite,

noticeable response to different n, the acoustic model shows little quantitative and

qualitative response to different n value.
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CHAPTER VIII

SU_IARY AND CONCLUSIONS

A modified approach to Childs' previous work (1989,1992) on fluid-structure

interaction forces in the leakage path between an impeller shroud and its housing is

presented in this thesis. Three governing equations consisting of a continuity, path-

momentum, and circumferential-momentum equations were developed to describe the

leakage path inside a pump impeller. Radial displacement perturbations were used to

solve for radial and circumferential force coefficients. In addition, impeller-discharge

pressure disturbances were used to obtain pressure oscillation responses due to

precessing impeller pressure wave pattern. Childs' model was modified from an

incompressible model to a compressible barotropic-fluid model (the density of the

working fluid is a function of the pressure and a constant temperature only). Results

obtained from this model yielded interaction forces for radial and circumferential force

coefficients. Radial and circumferential forces define reaction forces within the

impeller leakage path.

An acoustic model for the same leakage path was also developed. The

convective, Coriolis, and centrifugal acceleration terms are removed from the

compressible model to obtain the acoustics model. The compressible model is

compared with the incompressible model and the acoustic model. A solution due to

impeller discharge pressure disturbances model was also developed for the

compressible and acoustic models. The results from these modifications are used to

determine what effects additional perturbation terms in the compressible model have

on the acoustic model.

The results show that the additional fluid mechanics terms in the compressible

model do cause resonances (peaks) in the force coefficient response curves. However,

these peaks only occurred at high values of inlet circumferential velocity ratios. The

peak pressure oscillation was shown to occur at the wearing ring seal. Introduction of

impeller discharge disturbances with n diametral nodes showed that maximum peak
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pressureoscillationsoccurredat nondimensionalexcitationfrequenciesoff = 6.4 and

f = 7.8 for this particular pump. Bolleter's results suggest that for peak pressure

oscillations to occur at the wearing ring seal, the nondimensional excitation frequency

should be on the order of f = 2.182 for n = 11. The resonances found in this

research do not match those predicted by Bolleter. At the predicted frequencies given

by Bolleter, the compressible model shows an attenuation of the pressure oscillations

at the seal exit. This does not provide a plausible explanation for the unusual behavior

exhibited by the wearing ring seal.

The compressibility of the fluid does not have a significant influence on the

model at low values of nondimensional frequency. At high values of nondimensional

frequency, the effects of compressibility become more significant. For the acoustic

analysis, the convective, Coriolis, and centrifugal acceleration terms do affect the

results to a limited extent for a precession excitation and a large extent for a pressure

excitation when the fluid operates at relatively high roach numbers.
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APPENDIX A

2

- us° l_nr a_eomS]
(A.1)

A_- _ (attar + o.jns)
2hoPo_

(A.2)

Coefficient definitions for [A] Eq. (40)

( dho dPo dr +jT'Tp sol 1a.= -_o,,_h--_÷_o--_+_ -A_,_o _o
1 dho + 1 dPo l dr I

(A.3)

[A caT ](dfio 1 _u_fio/a,2= U_o z,_o +JT_oU,o]l '_- _o
(A.4)

U_o dPo[. dPo(%odPo .¢aT%o_

a_.o_,.[oo_t,_ _ .-_-] -j=ru_ofi o-Ae_c (A.5)

)-_ods rds

(A.6)

(A.7)



61

_ a_o[.u d_o(U,oa_o_rUoo_ _a,,_o]
(A.8)

Uso( d2z 1 dho _)
(A.9)

U,O(F_ Oodho1F3=_ ho
(A.10)

2

uso dP o

_o dp
(A.11)

Right hand side definitions for equation 41

dz .. rraz_-A_P°_ - P°ua'F2-JP°u'°-';---"ods)
Gq=

1 2 dPo /

(A.12)

r=_o(f-udr ) (A.13)
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APPENDIX B

Coefficient definitions for [B] of Eq. (50)

(B.I)

.nuT. dPo 1 -u_oPo
B_2= U,o z#o * J--f-'Pou /"_ _o

(B .2)

B13 =

u_ d_o[" dOo(%odOo +j n 6°Tu°° I -jn coTU_o_o - A _ _

]
(B.3)

[. u( dho + dJ_&°+___)+aas_o-jI'T_ol/F5B31 =[0° _h-_ _ods

(13.4)

B_ = (AzsPo + J-_PoU_)/ F5
(B.5)

_ 1 dOo[. dPo{u,odPo nt°Tuoo i -jnco T%o_ o -A_ o (B.6)
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APPENDIX C

Coefficient definitions for [C] of Eq. (57)

= [1 dh 1 dgo÷A3e_2T_+j_42eA30_] (c.1)

C:, : Au-
Aec

(C.2)

Cl2 = A_ [ r2Rj_o ap ] rRi[3 0 bo 2 d$

(C.3)

(C.4)
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APPENDIX D

Coefficient definitions for [D] of Eq. (60)

rAoc rAec J

(D.1)

A oa e4 
D2t = Ax,

Aoc

(D .2)

"A2ebLs ÷f_._pA,el+_FTd'o 1 (A " d'° fn2_2TibLsll
(D.3)

(D.4)

2 +n2¢a2T2f2Aec =A2o
(D.b3


